

Steel Ball Valves

Trunnion Ball Design, Successfully Fire-tested

KITZ CORPORATION

KITZ Ball Valves

Trunnion Mounted Ball Design

Contents

Design and inspection standards	2
Product Coding	2
Product Range	3
Component Drawing	4
Design Features	5
Pressure-Temperature Ratings	6
Flow Characteristics	7
Class 150 Carbon / Stainless Steel Ball Valves	8

Class 300 Carbon / Stainless Steel Ball Valves	·10
Class 600 Carbon / Stainless Steel Ball Valves	·12
Class 900 Carbon / Stainless Steel Ball Valves	•14
Class 1500 Carbon / Stainless Steel Ball Valves	·16
Exploded Diagram	18
Material of Carbon Steel Valve (WCB)	·19
Material of Stainless Steel Valve (CF8)	·20

KITZ Ball Valves Trunnion Mounted Ball Design

Design and inspection standards

i	tem	Design Standards
	Body	ASME B16.34
Pressure-temperature ratings	Resilient sealing parts	KITZ Standard
Shell wall thickness		ASME B16.34
Bore dimensions		API 6D
Face-to-Face dimensions		ASME B16.10
End flange dimensions and Flange gasket facing		ASME B16.5*1
Pressure test		API598 or API6D*2

Note: *1 MSS SP-44 for size 22.

MSS SP-44 and ASME BI6. 47 Series A for size 26 & over. $^{\ast}2$ Option.

Product Coding

Example:

1 Valve operation

None ·····Lever handle G·······Worm gear E········Electric actuator B········KITZ Type B actuator BSW······KITZ Type BS actuator FA·······KITZ Type FA actuator FAS·······KITZ Type FAS actuator

② End connection

None ·····Raised face flanged ends (standard) W······Butt-welding ends(option)

③ ASME Class

150,300,600,900 or 1500

Shell material
Sc Carbon or low alloy steel
U Stainless steel

(5) Symbol for ball valves

6 Symbol for trunnion ball valves

⑦ Bore design None ····· Full bore R ······ Reduced bore

8 symbol for super-firesafe design

9 Special shell material

An additional symbol is suffixed here, if other than WCB or CF8 is employed for shell material, such as:

M ------ CF8M BL------ LCB

Other special body material, contact to KITZ corporation Super Duplex Stainless Steel Duplex Stainless Steel Nickel Based Alloy

Product Range

	Body Material Carbon Steel												/				Stai	nless	Stee	l			
	\square	Class	5		150	/	300		600		900	/ 1	500	\square	150		300		600		900		1500
/	/ Kitz	Code	6-11-5	6-1E2	G-302CTCP	G.300	G-End	G-600 CTC	G.or.	G.ano	G-1E2	G. 1En.	G. 4.	G-1E-C	G.20 UTCR	G-300	G.E.	G-End	G.o.	G.an.	G-12	G-1EO	ADLUDONC.
	Bore	% 1	F	R	F	R	F	R	F	R	F	R	F	R	F	R	F	R	F	R	F	R	
	2	50	•		•		•		•		•		•		•		•		•		•		
	3	80	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	4	100	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	
	6	150	•	•	•	•	•	•		•			•	•	•	•	•	•		•			
	8	200	•	•	•	•		•					•	•	•	•		•					
	10	250		•		•								•		•							
	12	300																					
	14	350																					
Size	16	400																					
ninal	18	450																					
Non	20	500																					
	22	550																					
	24	600																					
	26	650																					
	28	700																					
	30	750																					
	32	800																					
	34	850																					
	36	900																					

• Lever operation is standard for the size marked ullet, without the prefex "G" on each KITZ Fig.

 \cdot Gear operation is standard for the size marked $\square.$

Electric or pneumatic actuators are optionally available. Contact your KITZ agent or distributor for appropriate choice and sizing of valve actuators. × 1 F: Full Bore R: Reduced Bore

Component Drawing

Where requirement of the firesafe provision is less stringent, valves may be optionally provided with sealing materials other than flexible graphite, for economic advantage. Contact KITZ Corporation for more details.

- *The illustration shown in this catalog represents the typical structure of class 600 valves.
- The structure may differ depending on size and class. Please consult KITZ for more details on the specifications and structure of the valve.

Design Features

1.Super-firesafe Design.

(1) Internal leakage prevention:

When resilient sealing materials are decomposed or deteriorated by a plant fire, the edge of the metal seat retainer preloaded by the seat spring comes into contact with the ball to shut off the line fluid to minimize internal leakage through the valve bore. The seat retainer also compresses KITZ originally designed flexible graphite retainer packings to prevent fluid leakage form between the valve body and the seat retainer(PATENTED).

(2) External leakage prevention

Leakage from the valve stem area is prevented by double sealing with O-ring and flexible graphite gland packings.Leakage through the valve body joint is also protected by double sealing with O-rings and flexible graphite gaskets. After a fire has deteriorated O-rings, flexible graphite packings and gaskets are the measure that prevents external fluid leakage.

Design Features

2.Tight Shut-off Sealing Mechanism

A floating seat design is employed so that each of the upstream and downstream seats is adequately maintained in contact with the ball by means of a seat spring.Line pressure helps this contact method. It features excelletnt sealing performance independently on both side seats at the same time.

3.Block and Bleed Function.

Ball seats shut off the line fluid independently on the upsteam and downsteam side of the ball. The valve bore and the body cavity are isolated from each other when the valve is fully opened or closed so that the residue within the body cavity may be disposed through the drain port or an optional vent valve mounted on the bottom of the valve body. The design prevents fluid contamination within the valve interior and easily detects seat leakage from both flow directions, without dismantling the valve from the pipeline.

4.Cavity Pressure Relief.

In case of an unusually high increase of servicing or ambient temperature, liquefied gas or highly volatile liquid trapped within the body cavity may evaporate, and cause an excessive rise in the cavity pressure.For safety consideration, a provision is made so that when the cavity pressure exceeds the line pressure, the ball seat will move slightly away from the ball surface to relieve the excessive cavity pressure into the valve bore.

5.Low Emission Design

The emission suppressing design of KITZ trunnion mounted ball valves is guaranteed by the production test carried out at factories prior to shipment. In the United States, the Federal Clean Air Act was dramatically amended in 1990, to realize the new environmental protection policy of a 95% reduction in fugitive emission or leak levels of toxic gases and chemicals from plant equipment. Promulgated in April, 1994, the new law requires all plants handling the toxic gas specified by the Environmental Protection Agency, to periodically monitor their plant equipment for detection of leaks exceeding 500 ppm, and repair or replace all defective parts immediately. California has exceeded the Federal law with a state regulation requiring 100 ppm maximum leak level for an astonishing 99% reduction of such an environmental pollution for the Northern California Region after 1997.

6.Options

(1) Emergency Seal Restoration.

For accidental leakage form the seat or stem sealing area, a sealant supply mechanism may be provided as an option.Should the sealing material be damaged or decomposed by fire or other accidental causes, leakage can be temporarily prevented by injection of the sealant into this mechanism.

(2) Low Temparture, cryogenic Temperature.(3) Stem Extetion.Please contact your KITZ agent or distributor.

Pressure-Temperature Ratings

The pressure-temperature rating of soft-seated ball valves are determined, not only by the valve shell materials, but also by the sealing materials used for ball seat, gland packings, O-rings, and flange gaskets. Sealing materials may be high molecule, or rubber, but the choice is limited by characteristics of the service fluid, working pressures, fluid velocity, and operational frequency of valves.

Class 150/300/600

Class 900/1500

As it is very difficult to predetermine the exact pressure-temperature ratings for all kinds of fluid under all imaginable conditions, we have prepared general rating charts for non-shock fluid service below, based on our past experiences both in the field and in our laboratory. Frequent need of maintenance is another factor to be kept in mind, if very high temperature operation is planned or expected.

* Poly Ether Ether Ketone.

O-ring Upper Limits

- U 1: (1)FKM(Standard for stainless steel valves) (2)Low-temperature FKM
- U 2: (1)EPDM
- U 3: (1)NBR(Standard for carbon steel valves) (2)Low-temperature NBR

O-ring Lower Limits

- L 1 : (1)FKM(Standard for stainless steel valves) L - 2 : (1)EPDM
 - (2)NBR(Standard for carbon steel valves)
- L 3 : Low-temperature FKM
- L-4: Low-temperature NBR

90°

Valve opening vs flow rete

45°

100

80

40

20

0

Flow rate (%) 60

Flow Characteristics

One of the best advantages of ball valves is that every flow per any given bore size is larger than other types of valves. Fluid is much less disturbed by eddy currents or pulsation. To obtain the figure of flow per valve opening, simply multiply the flow rate (%) given here by the corresponding value given in the table of Pressure Loss vs. Flow Rate.

Class 150/300/600

	.(0)150	Joer	<u>cs / (</u>	0-)15	0010.	,															
	Nominal	inch	2	3	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
	Size	mm	50	80	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
	Bore d	inch	2	3	4	6	8	10	12	13.25	15.25	17.25	19.25	21.25	23.25	25	27	29	30.75	32.75	34.5
	bone u	mm	51	76	102	152	203	254	305	337	387	438	489	540	591	635	686	737	781	832	876
a	i i	inch	7	8	9	15.5	18	21	24	27	30	34	36	40	42	45	49	51	54	58	60
Bor	-	mm	178	203	229	394	457	533	610	686	762	864	914	1016	1067	1143	1245	1295	1372	1473	1524
In	Н1	inch	6.50	7.60	9.09	12.95	15.47	15.47	17.36	18.94	23.54	25.31	27.87	31.42	33.98	33.86	35.42	37.01	38.98	39.65	41.14
		mm	165	193	231	329	393	393	441	481	598	643	708	798	863	860	895	940	990	1007	1045
	н2		3.98	5.04	6.02	8.62	10.75	13.35	15.16	16.69	18.54	20.24	22.80	24.72	27.17	26.97	28.35	30.51	32.48	34.21	35.71
	112	mm	101	128	153	219	273	339	385	424	471	514	579	628	690	685	720	775	825	869	907
Operation Lever														Ge	ear						

Class 150	Ca	rb	on	/St	air	nle	SS	Ste	el	Ba	II V	/al\	/es	SI	olit bo	ody, si	de en	try de	sign
Fig.G-150SC Reduced Bo	TCRS ore																		
Fig.G-150U	CRS																		
Reduced by	ne																		
											2								
							f						1						
							=		X										
							A		Gut	$\left\{ \right\}$			H₂ 						
	◄ L►																		
1		— D —				_		\mathbf{P}			<u>†</u>								
		•					*	\$ F	<u> </u>		 B								
Size	3×2×3	to 10×	8×10						A.	<u>></u>	Ļ								
								-	— D —										
							<u> </u>	oize 12>	KTUX12	: & over									
Fig.(G-)150SCT	RS <u>/ (</u> G	i-)1 <u>5</u> 0	UTCR	.S															
Nominal inch	2	3	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
	50	80 2	100 3	150 4	200 6	250 8	300 10	350 12	400	450 15.25	500 17.25	550 17.25	600 19.25	650 21.25	700 23.25	750 23.25	800 25	850 27	900 29
Bore d		51	76	102	152	203	254	305	337	387	438	438	489	540	591	591	635	686	737
		8	9	15.5	18	21	24	27	30	34	36	40	42	45	49	51	54	58	60
mm		203	229	394	457	533	610	686	762	864	914	1016	1067	1143	1245	1295	1372	1473 25.42	1524
		165	193	231	329	393	393	441	481	23.54 598	643	643	708	798	863	863	860	895	940
		3.98	5.04	6.02	8.62	10.75	13.35	15.16	16.69	18.54	20.24	20.24	22.80	24.72	27.17	27.17	26.97	28.35	30.51
H2		101	128	153	219	273	339	385	424	471	514	514	579	628	690	690	685	720	775
Operation				Lever								Ge	ear						

6.50

3.98

101

7.60

193

5.04 6.02

128

inch

mr 165

inch

H1

H2

Operation

9.09

231

153

Lever

12.95

329

8.62

219

15.47 15.47

393

10.75 13.35

273

393

339

441 481

15.16 16.69

385 424

17.36 18.94 23.54

598

18.54

471

643

20.24

514

27.87

708

22.80

579

31.42

798 863

24.72 27.17

628 690

Gear

890

28.15 30.31

715

945

770 815

960

32.09

39.76

1010 1080

34.06

865 909

35.79 37.28

1118

119	.(0-)000	Jaci	C3 / (G-)00	00103	, ,															
	Nominal	inch	2	3	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
	Size	mm	50	80	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
	Bore d	inch	2	3	4	6	8	10	12	13.25	15.25	17.25	19.25		23.25	25	27	29			
	Bore u	mm	51	76	102	152	203	254	305	337	387	438	489		591	635	686	737			
a		inch	11.5	14	17	22	26	31	33	35	39	43	47		55	57	61	65			
Bor	-	mm	292	356	432	559	660	787	838	889	991	1092	1194		1397	1448	1549	1651			
Ξ	Н1	inch	6.93	9.72	10.87	14.29	14.29	16.77	21.57	23.54	25.51	29.13	31.89		36.22	37.20	40.87	42.83			
		mm	176	247	276	363	363	426	548	598	648	740	810		920	945	1038	1088			
	Н2	inch	4.69	5.79	6.77	9.84	12.52	14.65	17.09	19.06	21.02	23.23	25.91		30.16	32.48	35.04	36.93			
	112	mm	119	147	172	250	318	372	434	484	534	590	658		766	825	890	938			
	Operatior	۱		Le	ver							Ge	ear								

Class 600	Ca	arb	on	/St	aiı	nle	SS	Ste	el	Ba	II V	'alv	/es	s	plit b	ody,si	de en	try de	sign
Fig.G-600SC Reduced B	TCRS ore																		
Fig.G-600U	TCRS																		
Reduced B	ore							-	A —	f.									
								İ	A		\ \								
							ŧ						1						
						1	×												
•																			
[]				Ð.	* *		1								
		-					₩.+	\$ <u>*</u>			 B								
Size	9×2×3	to 8×6	5×8					Ś	A	2									
								Size 10	— U -)x8x1() & ove	r								
								2.20 1											
Fig.(G-)600SC1	CRS / ((G-)60	ουτςι	RS															
Nominal ^{inch} Size _{mm}	2 50	3 80	4 100	6 15 <u>0</u>	8 200	10 250	12 300_	14 3 <u>50</u>	16 400_	18 450	20 500	22 5 <u>50</u>	24 6 <u>00</u>	26 650	28 7 <u>00</u>	30 7 <u>50</u>	32 800	34 850	36 900
Bore d inch		2	3	4	6	8	10	12	13.25	15.25	17.25		19.25	21.25	23.25	23.25			
		14	17	22	26	31	33	305	337	387 43	438		489 55	540 57	61	65			
mminch		356 6.93	432 9.72	559 10.87	660 14.29	787	838 16.77	889 21.57	991 23 54	1092 25 51	1194 29.13		1397 31.89	1448 34.06	1549 36.22	1651 36.22			
H1		176	247	276	363	363	426	548	598	648	740		810	865	920	920			
H2 —		4.69	5.79	6.77	9.84	12.52	14.65	17.09	19.06	21.02	23.23		25.91	27.99	30.16	30.16			
Operation		119	147	172	250	318	372	434	484	534	590 Gear		658	711	766	766			

61

1549 38.31

973

32.72

831

inch 14.5

mm 368 381

inch

mm 192

inch

7.56

5.59

142

L

H1

H2

Operation

15

10.98

279

6.77 8.07

172 205

Lever

18

457

315

12.40 12.72

24 29

610

323

10.71

272

737

381

13.19 15.98

335

33

838

518 568

406

38

965

18.15

461

15.00 20.39 22.36 26.18 28.74 31.30

40.5 44.5

1029

665

20.20 22.95

513

Gear

1130

730

583

48

1219 1321

795

25.43

646

52

32.48

825

27.80

	Nominal	inch	2	3	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
	Size	mm	50	80	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900
	Bore d	inch	2	3	4	5.75	7.625	9.5	11.375	12.5	14.25	16.125	17.875								
	Bore u	mm	51	76	102	146	194	241	289	318	362	410	454								
ð		inch	14.5	18.5	21.5	27.75	32.74	39	44.5	49.5	54.5	60.5	65.5								
Bor	-	mm	368	470	546	705	832	991	1130	1257	1384	1537	1664								
Б	Н1	inch	9.92	11.81	10.71	13.43	19.41	22.24	27.56	29.41	31.30	34.53	38.78								
		mm	252	300	272	341	493	565	700	747	795	877	985								
	H2	inch	6.50	8.07	8.90	11.77	15.28	18.07	21.85	23.78	26.93	29.80	32.68								
	112	mm	165	205	226	299	388	459	555	604	684	757	830								
Operation Lever Gear																					
	operation		LC	ver					Geur												

Exploded Diagram

This is typical construction of KITZ trunnion mounted ball design. For more details, contact KITZ agent or distributor

1	Body	1
2	Body Cap	1
3	Stem	1
4	Ball	1
7	Gland	1
8	Gland Packing	1
14	Set Pin	1set
19A/B/C	Gasket	1each
20	Pacing Washer	1
30	Ba ll Seat	2
31	Stem Washer	1
33A	Cap Nut	1set
33B	Cover Nut	1set
35A	Cap Bolt	1set
35B	Cover Bolt	1set
36	Gland Bolt	1set
45A/B/C/F	O-ring	1each
45D/E	O-ring	2each
47A/B	Thrust Washer	1each
57	Gland Bush	1
60A/B	Key	1each
67	Stem Bearing	2
85A/B	Plug	1each
102	Gear Unit	1
103	Bottom Stem	1
124A	Set Bolt	1
124B	Spring & Pin	1
132	Set Bolt	2
137	Nut	1set
143	Seat Spring	1set
144	Gland Plate	1
146	Back-up Ring	2
147	End Plate	1
150	Seat Retainer	2
151	Retainer Ring	2
155A/B	Shim	1set
176	Retainer Packing	2

Name of Parts Quantity

No

Material of Carbon Steel Valve (WCB)

No	Name of Parts	Materials	Specifiations
1	Body	Carbon Steel	ASTM A216 Gr.WCB
2	Body Cap	Carbon Steel	ASTM A216 Gr.WCB
3	Stem	Stainless Steel	ASTM A276 Type 403 *1
4	Ball	Carbon Steel	ASTM A105 / A215 Gr.WCB *1
7	Gland	Stainless Steel	ASTM A276 Type 316 *1
8	Gland Packing	Flexible Graphite	
19A/B/C	Gasket	Flexible Graphite	
30	Ball Seat	Class 150,300 & 600 : Glass Filled PTFE + MoS2 Class 900 & 1500 : Nylon + Graphite	
33A	Cap Nut	Carbon Steel	ASTM A194 Gr.2H
36	Gland Bolt	Carbon Steel	ASTM A193 Gr.B7
45A/B/C/D/E/F	Oring	NBR	
67	Stem Bearing	Metal Backed PTFE	
103	Bottom Stem	Stainless Steel	ASTM A276 Type 403
144	Gland Plate	Carbon Steel	ASTM A105 *1
147	End Plate	Carbon Steel	ASTM A105
150	Seat Retainer	Carbon Steel	ASTM A105 *2
143	Seat Spring	Stainless Steel	А313 Туре304
176	Retainer Packing	Flexible Graphite	
151	Retainer Ring	Stainless Steel	ASTM A240 Type 304

*1 : Cr plated

*2 : Zn plated

Material of Stainless Steel Valve (CF8)

No	Name of Parts	Materials	Specifiations
1	Body	Stainless Steel	ASTM A351 CF8
2	Body Cap	Stainless Steel	ASTM A351 CF8
3	Stem	Stainless Steel	ASTM A276 Type 304 *1
4	Ball	Stainless Steel	ASTM A351 CF8/A276 Type 304
7	Gland	Stainless Steel	ASTM A276 Type 316 *1
8	Gland Packing	Flexible Graphite	
19A/B/C	Gasket	Flexible Graphite	
30	Ball Seat	Class 150,300 & 600 : Glass Filled PTFE + MoS2 Class 900 & 1500 : Nylon + Graphite	
33A	Cap Nut	Stainless Steel	ASTM A194 Gr.8
36	Gland Bolt	Stainless Steel	ASTM A193 Gr.B8
45A/B/C/D/E/F	Oring	FKM	
67	Stem Bearing	Metal Backed PTFE	
103	Bottom Stem	Stainless Steel	ASTM A276 Type 304
144	Gland Plate	Stainless Steel	ASTM A276 Type 304 *1
147	End Plate	Stainless Steel	ASTM A276 Type 304
150	Seat Retainer	Stainless Steel	ASTM A276 Type 304
143	Seat Spring	Stainless Steel	A313 Type304
176	Retainer Packing	Flexible Graphite	
151	Retainer Ring	Stainless Steel	ASTM A240 Type 304

*1 : Cr plated

KITZ B Series Pneumatic Actuator

KITZ B Series Pneumatic Actuators are simply designed, assembled with minimized parts for trouble-free operation.

The power transmission mechanism is separated form the cylinder. The design helps prevent air leakage and reduce chances to damage the scotch and yoke caused by supply air to achieve long service life.

Type BS (Spring-Return)

Type BSW (Spring-Return with Manual Operation Device)

ACAUTION

Pressure-temperature ratings and other performance data published in this catalog have been developed from our design calculation, in-house testing, field reports provided by our customers and/or published official standards or specifications. They are good only to cover typical applications as a general guideline to users of KITZ products introduced in this catalog.

For any specific application, users are kindly requested to contact KITZ Corporation for technical advice, or to carry out their own study and evaluation for proving suitability of these products to such an application. Failure to follow this request could result in property damage and/or personal injury, for which we shall not be liable.

While this catalog has been compiled with the utmost care, we assume no responsibility for errors, impropriety or inadequacy. Any information provided in this catalog is subject to fromtime-to-time change without notice for error rectification, product discontinuation, design modification, new product introduction or any other cause that KITZ Corporation considers necessary. This edition cancels all previous issues.

If any products designated as strategic material in the Foreign Exchange and Foreign Trade Law, Cabinet Order Concerning Control of Export Trade, Cabinet Oeder Concerning Control of Foregn Exchange and other related laws and ordinances ("Foreign Exchange Laws") are exported to any foreign country or countries, an export license issued by the Japanese Government will be required under the Foreign Exchange Laws.

Futher, there may be cases where an export license issued by the government of the United States or other country will be required under the applicable export-related laws and ordinances in such relevant countries.

The contract shall become effective subject to that a relevant export license is obtained from the Japanese Government.

1-10-1, Nakase, Mihama-ku, Chiba 261-8577, Japan International Sales Dept. Phone : 81-43-299-1730, 1732 and 1733 Fax : 81-43-299-0121

— Distributed by —