
KITZ Steel Ball Valves

Floating Ball Design

KITZ Steel Ball Valves

Floating Ball Design

The products introduced in this catalog are all covered by ISO 9001 and 9002 certification awarded KITZ Corporation, KITZ Corporation of Europe, S.A. and KITZ Corporation of Taiwan.

KITZ Corporation of Taiwan, Kaohsiung Plant, Taiwan (ISO 9002)

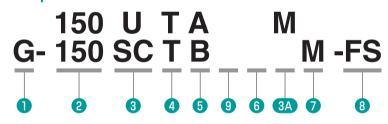
KITZ Corporation of Europe, S.A., Barcelona Plant, Spain (ISO 9001)

KITZ Corporation, Ina Plant, Japan (ISO 9001)

KITZ Corporation, Nagasaka Plant, Japan (ISO 9001)

Contents

Design and Inspection Standards	1
KITZ Product Coding	1
Product Range	2
Pressure-Temperature Ratings	6
Design Features	10
KITZ HYPATITE® PTFE Ball Seats	13
KITZ Ball Seat Materials	14
Class 150/300 Carbon Steel (Split body) Ball Valves	15
Class 150/300 Carbon Steel (Uni-body) Ball Valves	16
Class 600/1500 Carbon Steel (Split body) Ball Valves	17
Class 150/300 Stainless Steel (Split body) Ball Valves	18
Class 150/300 Stainless Steel (Uni-body) Ball Valves	19
Class 600/1500 Stainless Steel (Split body) Ball Valves	20
Class 150 Low Temperature Service Ball Valves	21
Class 300 Low Temperature Service Ball Valves	22
Class 150 Stainless Steel 3-way Ball Valves	23
Class 150 Stainless Steel Pocketless Ball Valves	24
Class 150 Stainless Steel Jacketed Ball Valves	24
Class 150 Stainless Steel Tank Ball Valves	25
JIS 10K Stainless Steel PFA Lined Ball Valves	25
Type 600/1000 Carbon Steel Ball Valves (Threaded)	26
Type 1500/2000 Carbon Steel Ball Valves (Threaded)	26
Type 1500/2000 Welded Body Carbon Steel Ball Valves (Threaded)	27
Class 800 Welded Body Carbon Steel Ball Valves (Threaded)	27
Type 3000 Welded Body Carbon Steel Ball Valves (Threaded)	27
Class 800 Carbon Steel Ball Valves (Welding)	28
Type 3000 Carbon Steel Ball Valves (Welding)	28
Type 1000 3-piece Carbon Steel Ball Valves (Threaded or Welding)	28
Type 600/1000 Stainless Steel Ball Valves (Threaded)	29
Type 800 Stainless Steel Ball Valves (Threaded)	30
Type 1000 Stainless Steel Ball Valves (Threaded)	30
Type 1500/2000 Stainless Steel Ball Valves (Threaded)	31
Type 1500/2000 Welded Body Stainless Steel Ball Valves (Threaded)	31
Type 1000 3-piece Stainless Steel Ball Valves (Threaded or Welding)	32
Type 800 Stainless Steel 3-way Ball Valves (Threaded)	33
Class 150 Stainless Steel Ball Valves (Threaded)	33
Dimensions of Actuator Mounting Pads	35
Construction and Materials	38
■Technical Information	
Technical Features of KITZ HYPATITE® PTFE and SWELLESS® Ball Seats	48
Fire Test Standards	50
General Precautions	52
Flow Characteristics	53
Steel Pipe Flanges	54


Design and Inspection Standards of KITZ Flanged Ball Valves

Item		American Standards	British Standards					
Draggura tamparatura ratinga	Body	ASME B16.34	BS 5351					
Pressure-temperature ratings	Resilient sealing parts	KITZ Standard						
Shell wall thickness		ASME B16.34	BS 5351					
Face-to-face dimensions		ASME B16.10	BS 2080*1					
End flange dimensions and flang	e gasket facing	ASME B16.5	BS 1560					
Pressure test		API 598 or API 6D*2	BS 6755 Part 1 *2					
Fire test		API 607 and API 6FA	BS 6755 Part 2					

^{*1} Option for 2 to 4 Class 150 full port design.

Product Coding for KITZ Flanged Ball Valves

Example:

Valve operational measure

None ····· Lever handle
G Worm gear
E Electric actuator
B KITZ Type B actuator
BS KITZ Type BS actuator
BSW KITZ Type BSW actuator
FA KITZ Type FA actuator
FAS KITZ Type FAS actuato

2 ASME pressure class

150, 300, 600 or 1500

3 Shell material

SC Carbon or low alloy steel U Stainless or high alloy steel

3A Shell material

An additional symbol is suffixed here, if other than WCB or CF8 is employed for shell material, such as:

M	CF8M	BL ······ LCB
٧	CF3	CL LCC
0	CF3M	1L LC1
CB	CF8C	2L LC2
CG	CG8M	3L LC3
CK	CK20	
SD	CD3MW	CuN
CN	CN7M	
НВ	N-12MV	
HC	CW-12N	IW

4 Symbol for ball valves

Valve design

В	Full port, split body with KITZ
	actuator mounting pad
Α	Regular port, uni-body with
	ISO actuator mounting pad

O Valve type

(Uni-body, end entry design)

(Split body, side entry design)

Trim material for carbon steel valves

No symbol suffixed for 304 s/s trim. "M" suffixed for 316 s/s trim.

No symbol suffixed for PTFE packing and gasket.

"-FS" or "S" suffixed for flexible graphite packing and gasket for super-firesafe provision.

Seat Material

None ·····	HYPATITE® PTFE
1H	FILL TITE®

This catalog uses MPa, a SI unit, for indication of pressures. psi and kgf/cm² are also added for readers' convenience.

^{*2} Option.

Product Range

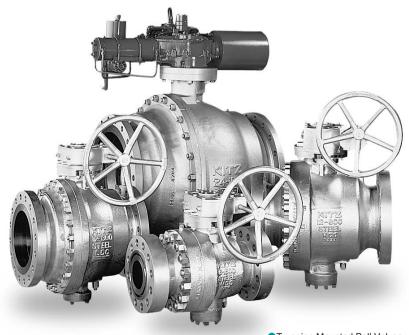
Flanged Floating Ball Valves

		ling ball valves	_ *1	Size	in.	1/2	3/4	1	11/4	11/2	2	21/2	3	4	5	6	8	10	12	
Shell Material	Class	KITZ Product Code	Bore	Body Design	mm	15	20	25	32	40	50	65	80	100	125	150	200	250	300	Page
	150	150SCTB	F	Split		•	•	•		•	•	•	•	•	•	•	•	<u>*2</u>		15
	150	150SCTA	R	Uni		•	•	•			•		•	•		•	•	•		16
	300	300SCTB	F	Split		•	•	•			•	•	•	•		•	•			15
<u> </u>	300	300SCTA	R	Uni		•	•	•			•		•	•		•	•	•		16
Ste	600	600SCTB	F	Split		•	•	•												17
Carbon Stee	1500	1500SCTB	F	Split		•	•	•												17
Ca	150	150SCTR	R	Split											•	•	•	•	(A)	*3
	300	300SCTR	R	Split												•	•	•		*3
	JIS 10K	10SCTB	F	Split		•	•	•			•	•	•	•	•	•	•	<u>(A)</u>		*3
	JIS 20K	20SCTB	F	Split		•	•	•			•	•	•	•	•	•	•			*3
	150	150UTBM	F	Split		•	•	•			•	•	•	•	•	•	•	(A)		18
	150	150UTAM	R	Uni		•	•	•			•		•	•		•	•	•		19
	300	300UTBM	F	Split		•	•	•			•		•	•		•	•			18
	300	300UTAM	R	Uni		•	•	•			•		•	•		•	•	•		19
	600	600UTBM	F	Split		•	•	•		•										20
	1500	1500UTBM	F	Split		•	•	•		•										20
	150	150UTBX	F	Split/Extended ste	m	•	•	•		•	•	•	•	•	•	•	•	(A)		21
	300	300UTBX	F	Split/Extended ste	m	•	•	•		•	•		•	•		•	•			22
	150	150UTRM	R	Split							•	•	•	•	•	•	•	•	(A)	*3
ee	300	300UTRM	R	Split							•		•	•		•	•	•		*3
Stainless Steel	JIS 10K	10UTBM	F	Split		•	•	•	•		•	•	•	•	•	•	•	(A)		*3
nles	JIS 20K	20UTBM	F	Split		•	•	•			•	•	•	•		•	•			*3
Stai	150	150UTB2LM/2TM	F	Split/3-way-2-sea	t			•			•	•	•	•		•				23
	150	150UTB4LAM/4TAM	F	Split/3-way-4-sea	t	•	•	•			•	•	•	•	•	•	•			23
	JIS 10K	10UTB2LM/2TM	F	Split/3-way-2-sea	t			•			•	•	•	•		•				*3
	JIS 10K	10UTB4LAM/4TAM	F	Split/3-way-4-sea	t	•	•	•			•	•	•	•	•	•	•			*3
	150	150UTBPM	F	Split/Pocketless		•	•	•			•	•	•	•	•	•	•			24
	150	150UTBJM	F	Jacketed		•	•	•			•	•	•	•		•				24
	JIS 10K	10UTBJM	F	Jacketed		•	•	•			•		•	•		•				*3
	150	150UTBTM	F	Split/Tank ball				•			•	•	•	•	•	•	•			25
	JIS 10K	10UTBTM	F	Split/Tank ball				•			•	•	•	•	•	•	•			*3
	JIS 10K	10UTBLN	F	Split/PFA lined		•	•	•			•	•	•	•						*3
	JIS 10K	10STBF	F	Split		•	•	•	•	•	•	•	•	•	•	•	•			*4
Ductile Iron	JIS 10K	10STLBF	F	Split/Gas service		•	•	•	•	•	•	•	•	•	•	•	•			*4
ıctiik	JIS 20K	20STLB	F	Split/Gas service		•	•	•	•	•	•	•	•	•		•	•			*4
2	JIS 10K	10STB4LAF/4TAF	F	Split/3-way-4-seat	t					•	•	•	•	•	•	•	•			*4
u.	125	125FCTB	F	Split							•	•	•	•		•	•			*5
Cast Iron	JIS 10K	10FCTB	F	Split		•	•	•	•	•	•	•	•	•	•	•	•	(A)		*5
Ca	JIS 10K	10FCTB2L	F	Split/3-way·2-seat	t					•	•	•	•	•	•	•	•			*5

^{*1} Bore design: F=Full port, R=Reduced port
*2 Worm gear operation is standardised for the sizes marked (a) with the prefix "G-" on each KITZ product code.
*3 Please contact KITZ Corporation for details.
*4 Refer to KITZ Ductile Iron Valves catalog (No. E-140) for detailes.
*5 Refer to KITZ Cast Iron Valves catalog (No. E-120) for detailes.

Product Range

Flanged High Performance Ball Valves


Shell	Class	KITZ Duadwat Coda	*1	Size	in.	1/2	3/4	1	11/4	11/2	2	21/2	3	4	5	6	8	10	12	14	Dono
Material	Class	KITZ Product Code	Bore	Body Design	mm	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	Page
	150	L-150UVC(T)M*2	F	Split/For control				•			•		•	•	•	•	•				*4
	150	G-150UVC(T)M*2	F	Split/For control												•	•	•	•	•	*4
teel	300	L-300UVC(T)M*2	F	Split/For control				•		•	•		•		•	•	•				*4
oort is S	300	G-300UVC(T)M*2	F	Split/For control												•	•	•			*4
	JIS 10K	L-10UVC(T)M*2	F	Split/For control				•			•		•		•	•	•				*4
^-port Stainless Steel	JIS 10K	G-10UVC(T)M*2	F	Split/For control												•	•	•		•	*4
	JIS 20K	L-20UVC(T)M*2	F	Split/For control				•		•	•	•	•	•	•	•	•				*4
	JIS 20K	G-20UVC(T)M*2	F	Split/For control												•	•	•			*4
<u> </u>	150	150SCTB3H	F	Split/Max. 500℃		•	•	•		•	•	•	•	•		(A)	△ *3				*5
Ste	150	150UTB3HM	F	Split/Max. 500℃		•	•	•		•	•	•	•	•	(A)	(A)	<u>(A)</u>				*5
atec less	300	300ЅСТВЗН	F	Split/Max. 500℃		•	•	•		•	•	•	•	<u>(A)</u>		(A)	<u>(A)</u>				*5
Seatrain	300	300UТВЗНМ	F	Split/Max. 500℃		•	•	•		•	•		•	(A)		(A)	(A)				*5
Graphite Seated Carbon and Stainless Steel	JIS 10K	10SCTB3H	F	Split/Max. 300℃		•	•	•		•	•	•	•	•	(A)	(A)	(A)				*5
irap 1 an	JIS 10K	10UTB3HM	F	Split/Max. 300℃		•	•	•	•	•	•	•	•	•	(A)	(A)	(A)				*5
rb O Io	JIS 20K	20SCTB3H	F	Split/Max. 425℃		•	•	•		•	•	•	•	(A)	(A)	(A)	(A)				*5
S	JIS 20K	20UTB3HM	F	Split/Max. 425℃		•	•	•		•	•		•	(A)		(A)	(A)				*5
	150	150SCTB5H	F	Split/Max. 300°C		•	•	•		•	•	•	•	•		<u>(A)</u>	<u>(A)</u>				*5
	150	150UTB5H	F	Split/Max. 300°C		•	•	•		•	•	•	•	•		(A)	<u>(A)</u>				*5
<u> </u>	150	150UTB5HM	F	Split/Max. 300°C		•	•	•		•	•	•	•	•		<u>(A)</u>	<u>(A)</u>				*5
Ste	300	300SCTB5H	F	Split/Max. 300℃		•	•	•		•	•	•	•	(A)		<u>(A)</u>	<u>(A)</u>				*5
ed	300	300UTB5H	F	Split/Max. 300°C		•	•	•		•	•	•	•	(A)		<u>(A)</u>	<u>(A)</u>				*5
Metal Seated Carbon and Stainless Steel	300	300UTB5HM	F	Split/Max. 300°C		•	•	•		•	•	•	•	<u>(A)</u>		(A)	<u>(A)</u>				*5
tal S	JIS 10K	10SCTB5H	F	Split/Max. 300℃		•	•	•	•	•	•	•	•	•		(A)	(A)				*5
Me r	JIS 10K	10UTB5H	F	Split/Max. 300℃		•	•	•	•	•	•	•	•	•		(A)	(A)				*5
- Po	JIS 10K	10UTB5HM	F	Split/Max. 300°C		•	•	•		•	•	•	•	•		(A)	<u>(A)</u>				*5
Sa	JIS 20K	20SCTB5H	F	Split/Max. 300℃		•	•	•		•	•	•	•	(A)		<u>(A)</u>	<u>(A)</u>				*5
	JIS 20K	20UTB5H	F	Split/Max. 300℃		•	•	•		•	•	•	•	(A)		(A)	(A)				*5
	JIS 20K	20UTB5HM	F	Split/Max. 300℃		•	•	•		•	•	•	•	(A)		(A)	(A)				*5
	150	150SCTB6H	F	Split/Max. 500℃		•	•	•		•	•	•	•			(A)	(A)				*5
<u> </u>	150	150UTB6HM	F	Split/Max. 500℃		•	•	•		•	•	•	•		(A)	(A)	(A)				*5
ated inless Steel	300	300SCTB6H	F	Split/Max. 500℃		•	•	•		•	•	•	•	<u>(A)</u>		(A)	(A)				*5
ess ess	300	300UTB6HM	F	Split/Max. 500℃		•	•	•		•	•	•	•	<u>(A)</u>		(A)	(A)				*5
eated	600	600SCTB6H	F	Split/Max. 500℃		•	•	•		•											*5
al S d St	600	600UTB6HM	F	Split/Max. 500℃		•	•	•		•											*5
Met	JIS 10K	10SCTB6H	F	Split/Max. 300℃		•	•	•		•	•	•	•		(A)	(A)	(A)				*5
Metal Se Carbon and Sta	JIS 10K	10UTB6HM	F	Split/Max. 300℃		•	•	•	•	•	•	•	•	•	<u>(A)</u>	(A)	<u>(A)</u>				*5
Car	JIS 20K	20SCTB6H	F	Split/Max. 425℃		•	•	•		•	•	•	•	(A)	(A)	(A)	(A)				*5
	JIS 20K	20UTB6HM	F	Split/Max. 425℃		•	•	•		•	•	•	•	(A)		(A)	(A)				*5
	150	150TTB	F	Split		•	•	•		•	•	•	•	•	•	•	•				*6
in	300	300TTB	F	Split		•	•	•		•	•	•	•	•		•	•				*6
Titanium	JIS 10K	10TTB	F	Split		•	•	•		•	•		•	•	•	•	•				*6
F	JIS 20K	20TTB	F	Split				•		•	•		•			•	•				*6

^{*1} Bore design: F=Full port
*2 Operation: L=Lever, G=Gear
*3 Worm gear operation is standardised for the sizes marked (a) with the prefix "G-" on each KITZ product code.
*4 Refer to KITZ Graphite and Metal Seated Ball Valves catalog (No. E-204) for detailes.
*5 Refer to KITZ A-port Quarter-Turn Control Valves catalog (No. E-203) for detailes.
*6 Please contact KITZ Corporation for details.

Product Range

Flanged Trunnion Mounted Ball Valves

Shell	Class	KITZ Product	*1	Size	in.	2	3	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	Page
Material	Class	Code	Dore	Body Design	mm	50	80	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	
	150	150SCTCS	F	Super-firesa	fe*3	•	•	•	•	•	(A)	<u>*</u> 2	*4												
Steel	300	300SCTCS	F	Super-firesa	fe*3	•	•	•	•	•	(A)	<u>(A)</u>	(A)	(A)	(A)	*4									
	600	600SCTCS	F	Super-firesa	fe*3	•	•	•	•	<u>(A)</u>	(A)	(A)	(A)	(A)	(A)	(A)		(A)	(A)	(A)	(A)				*4
Carbon	900	900SCTCS	F	Super-firesa	fe*3	•	•	•	(A)	<u>(A)</u>		(A)							*4						
	1500	1500SCTCS	F	Super-firesa	fe*3	•	•	(A)	(A)	<u>(A)</u>	(A)	(A)	<u>(A)</u>	(A)	(A)	<u>(A)</u>									*4
<u></u>	150	150UTCSM	F	Super-firesa	fe*3	•	•	•	•	•	(A)	(A)	(A)	(A)	(A)	<u>(A)</u>		(A)	(A)	<u>(A)</u>	(A)	(A)	(A)	(A)	*4
Steel	300	300UTCSM	F	Super-firesa	fe*3	•	•	•	•	•	(A)	(A)	(A)	(A)	(A)	<u>(A)</u>		(A)	<u>(A)</u>	<u>(A)</u>	(A)	(A)	(A)	<u>(A)</u>	*4
ess	600	600UTCSM	F	Super-firesa	fe*3	•	•	•	•	<u> </u>	(A)	(A)	(A)	(A)	(A)	<u>(A)</u>		(A)							*4
Stainless	900	900UTCSM	F	Super-firesa	fe*3	•	•	•	(A)	<u>(A)</u>									*4						
S	1500	1500UTCSM	F	Super-firesa	fe*3	•	•	(A)	(A)	<u>(A)</u>	(A)	(A)	<u>(A)</u>	(A)	(A)	<u>(A)</u>									*4

^{*1} Bore design: F=Full port (Reduced port type is also available.)
*2 Worm gear operation is standard for the sizes marked (a) with the prefix "G-" on each KITZ product code.
*3 Non firesafe types are also available.
*4 Refer to KITZ Trunnion Mounted Ball Valves catalog (No. E-202) for details.

Product Range

Threaded or Welded Ball Valves

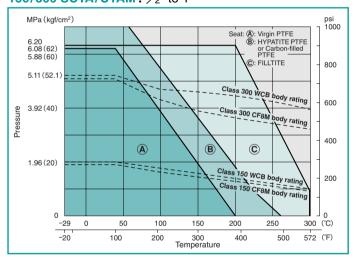
Shell		WITT D. I. I.O. I	*1	Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2	2	21/2	3	
Material	Class	KITZ Product Code	Bore	Body Design	mm	8	10	15	20	25	32	40	50	65	80	Page
	600/1000 WOG	SCTK*2	D	Uni/Threaded ends		•	•	•	•	•	•	•	•			26
	800	800SCTK*3	R	Seal welded/Threaded or Socket welded	lends		•	•		•	•	•	•			27,28
Carbon Steel	1000WOG	SC3TZF*3	F	3-piece/Threaded or Socket welded	ends	•	•	•	•		•	•				28
on S	1000WOG	SC3TZ*3	R	3-piece/Threaded or welded end	s			•	•	•		•	•			29
Carb	1500/2000 WOG	AKSCTHZM*4	R	Split/Threaded ends		•	•	•	•		•	•				26
Ŭ	1500/2000 WOG	AKSCTWZM*4	R	Seal welded/Threaded ends		•	•	•			•	•	•			27
	3000WOG	3000SCTK*3	R	Seal welded/Threaded or Socket welde	d ends	•	•	•	•	•	•	•	•			27,28
	600/1000 WOG	UTKM*2	D	Uni/Threaded ends		•	•	•	•	•	•	•	•			29
	800WOG	UTHM*2	R	Split/Threaded ends				•	•	•	•	•	•			30
	1000WOG	UTFM*2	F	Split/Threaded ends				•	•		•	•	•			30
l ee	800WOG	UTH4LM/4TM	R	Split/3-way·4-seat/Threaded end	ds			•	•	•	•	•	•			33
Stainless Steel	1000WOG	U3TZFM*3	F	3-piece/Threaded or welded end	s	•	•	•	•	•	•	•				32
inles	1000WOG	U3TZM*3	R	3-piece/Threaded or welded end	s			•	•	•		•	•			32
Stai	1500/2000 WOG	AKUTHZM*4	R	Split/Threaded ends		•	•	•	•	•	•	•	•			31
	1500/2000 WOG	AKUTWZM*4	R	Seal welded/Threaded ends			•	•	•		•	•				31
	150	AK150UTM*4	F	Split/Threaded ends			•	•	•	•	•	•	•	•	•	33
	JIS 10K	10UTM	F	Split/Threaded ends			•	•	•	•	•	•	•	•	•	*5
tile	JIS 20K	20ST	R	Split/Threaded ends				•	•	•	•	•	•			*6
Ductile Iron	400WOG	ST	R	Split//Threaded ends		•	•	•	•	•	•	•	•			*6
Cast	JIS 10K	10FCT	R	Split/Seal welded/Threaded end	s		•	•	•	•	•	•	•	•	•	*7

- *1 Bore design: F=Full port, R=Regular port, D=Reduced port
 *2 Rc threaded ends are standard. Prefix "AK" means NPT threaded end.
 *3 Rc threaded ends are standard. Prefix "AK" means NPT threaded ends and "AW" means socket welded ends.
 *4 NPT threaded ends are only available.
 *5 Please contact KITZ Corporation for details.
 *6 Refer to KITZ Ductile Iron Valves catalog (No. E-140) for detailes.
 *7 Refer to KITZ Cast Iron Valves catalog (No. E-120) for detailes.

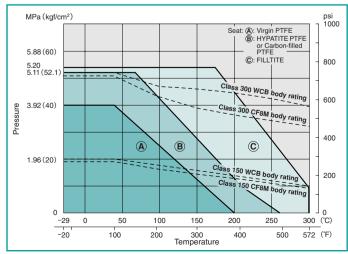
Pressure-Temperature Ratings

The pressure-temperature ratings of ball valves are determined, not only by valve shell materials, but more essentially by sealing materials, used for ball seats, gland packing and gaskets. Sealing materials may be high molecule, or rubber, but the choice is limited by the characteristics of the service fluid, working temperatures, working pressures, velocity of fluid, and operational frequency of valves.

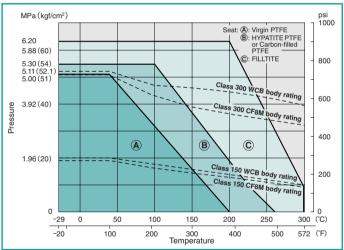
As it is very difficult to predetermine the exact pressuretemperature rating for all kinds of fluid under all imaginable conditions, we have prepared general rating charts for nonshock fluid service here, based on our past experiences both in the field and in our laboratory.

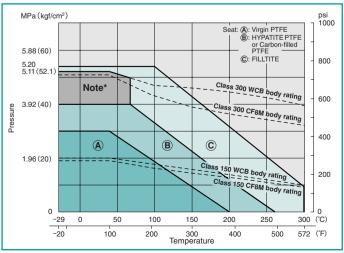

In case of extraordinary service conditions as mentioned below, contact KITZ Corporation or its distributors for technical advice:

- Valves shall be left fully closed for a long period of time under high temperature or high differential pressure.
- 2. Valves shall be frequently operated under high temperature or high differential pressure.
- 3. Frequent change of line pressure or temperature.

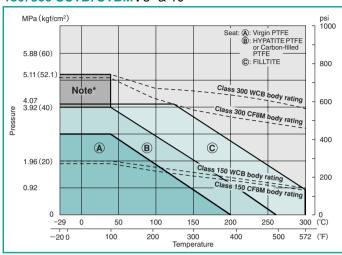

HYPATITE® PTFE is the standard seat material for KITZ ball valves. Specify virgin PTFE or carbon-filled PTFE when required. The body ratings shown here are for ASTM A216 Gr. WCB and A351 Gr. CF8M. For the pressure ratings of other valve shell materials, refer to the latest edition of ASME B16.34.

FILLTITE® is a specially reinforced ball seat, made by using carbon based fillers into PTFE at higher rate than conventional carbon filled PTFE, which greatly improves heat and abrasion resistance. The material shows excellent operability, durability, chemical resistance and sealing performance at a high temperature of 300°C. In addition, the ball seat is replaceable with the most of our conventional ball seats, so it also has the cost advantage.

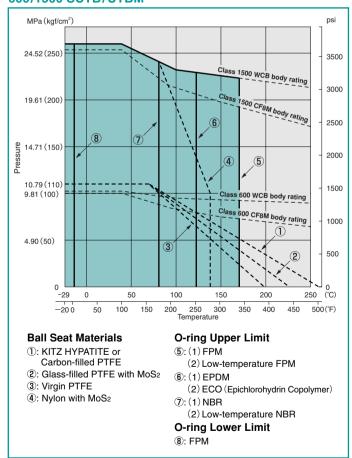

150/300 SCTB/UTBM: 1/2" & 3/4" 150/300 SCTA/UTAM: 1/2" to 1"


150/300 SCTB/UTBM: 3" & 4" 150/300 SCTA/UTAM: 4" & 6"

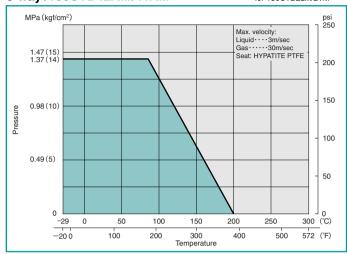
150/300 SCTB/UTBM: 1" to 2½" 150/300 SCTA/UTAM: 1¼" to 3"


150/300 SCTB/UTBM: 5" & 6" 150/300 SCTA/UTAM: 8" & 10"

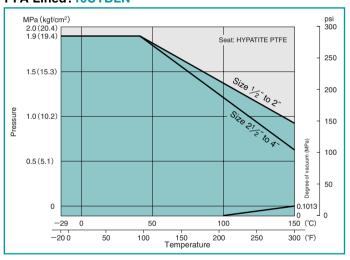
Note*: Continuous pressurization is not recommended in this P-T range.


Pressure-Temperature Ratings

150/300 SCTB/UTBM: 8" & 10"


Note*: Continuous pressurization is not recommended in this P-T range.

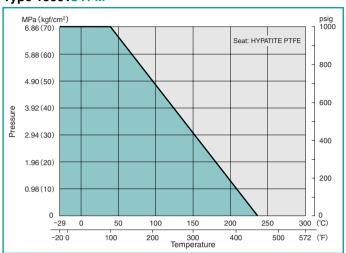
600/1500 SCTB/UTBM



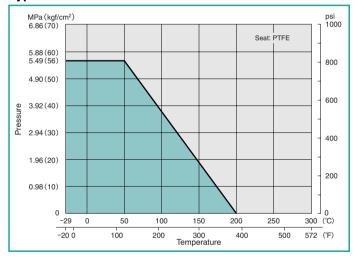
3-way:150UTB4LAM/4TAM

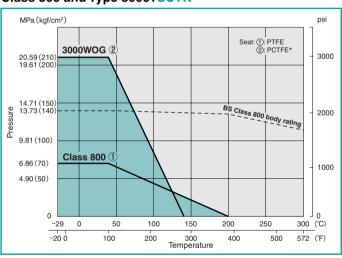
*Refer to 150UTBM ratings for 150UTB2LM/2TM

PFA Lined: 10UTBLN

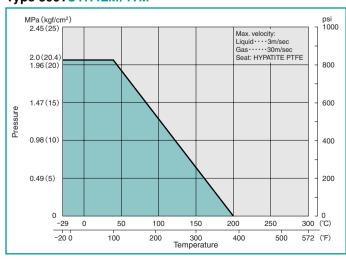


Pressure-Temperature Ratings

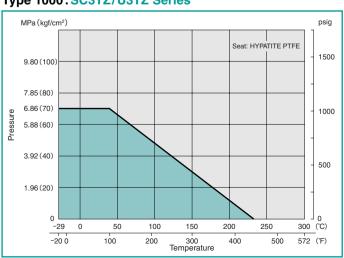

Type 600: SCTK/UTKM


Type 1000:UTFM

Type 800: UTHM

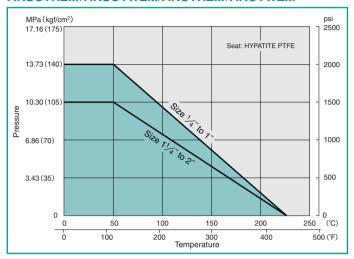


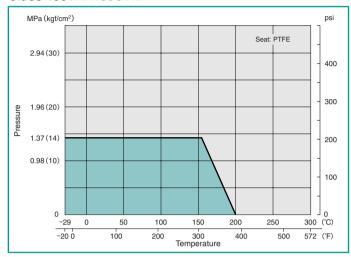
Class 800 and Type 3000: SCTK

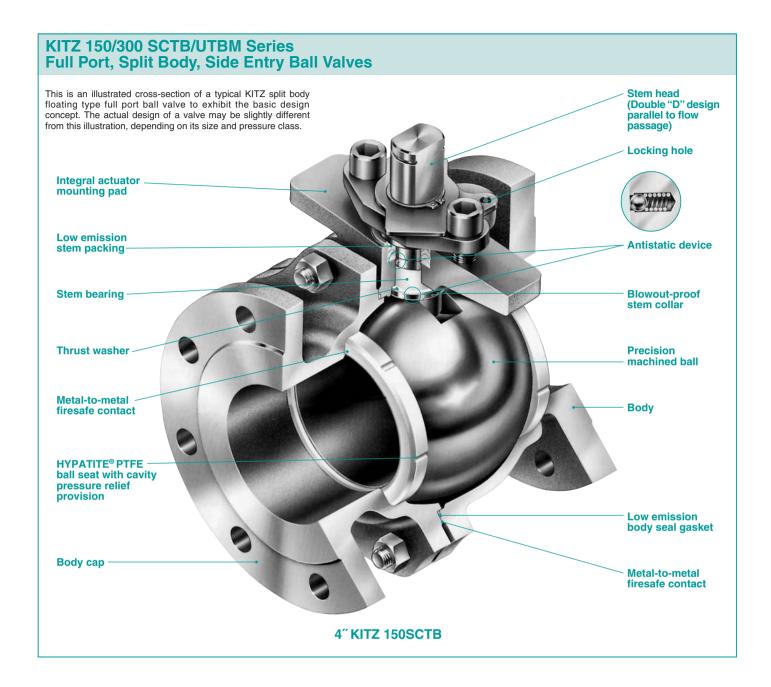


* Polychloro-Trifluoro-Ethylene

Type 800: UTH4LM/4TM


Type 1000: SC3TZ/U3TZ Series

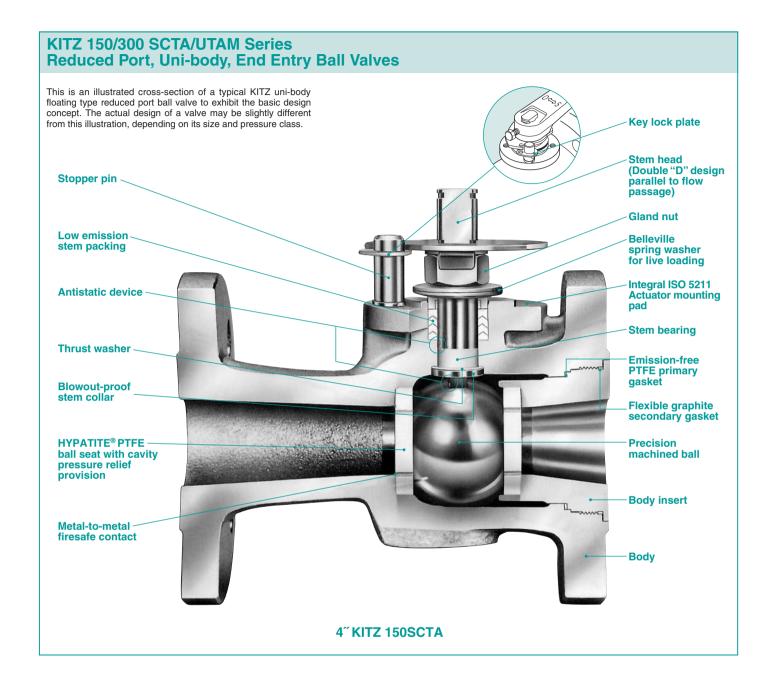

Note: Type 1500 is optionally available


Pressure-Temperature Ratings

Type 1500/2000: SCTKZM-FS/UTKZM-FS AKSCTHZM/AKSCTWZM/AKUTHZM/AKUTWZM

Class 150: AK150UTM

Bubble-tight sealing performance with HYPATITE® PTFE ball seats


HYPATITE® PTFE ball seats, standard stem seals of KITZ ball valves, are made of denatured PTFE, a molecularly reinforced PTFE/PFA copolymer, and specifically engineered for high bi-directional sealing performance and prolonged service life of valves. Its resistance to high or low temperature, creep or compression, abrasion and corrosion is all outstanding. As an option, KITZ SWELLESS® ball seats principally made of PFA are recommended specifically for monomer service. This epoch-making new seat maximizes resistance to the permeation of monomer into its molecular structure (generally known as a "swelling" problem) which causes seat deformation and seriously affects shut-off function of valves in styrene and butadiene monomer service.

Simplified actuator mounting

For 150/300 SCTA/UTAM Series ball valves, **ISO 5211** actuator mounting pad is integrally provided for uniformly simplified mounting of any actuators provided with valve mounting flanges designed to ISO 5211 dimensional requirement. 150/300 SCTB/UTBM Series ball valves are provided with KITZ standard integral actuator mounting pad.

Easy maintenance

Split body design for KITZ 150/300 SCTB/UTBM Series provides the convenience of very easy maintenance critically required for process plants. Body inserts of uni-body, end entry design for KITZ 150/300 SCTA/UTAM Series are threaded into the valve body with provision of unthreading for valve disassembly in case of maintenance operation.

Extensive safety considerations

KITZ ball valves are designed with extensive safety considerations for users. Blow-out proof stems, provision of locking devices and prevention of misalignment of lever handles provide safe handling in the field and trouble-free operation in the plant. Antistatic devices, firesafe seal design and cavity pressure relief features all assure the economic benefits of smooth, steady plant operation. KITZ advancements in low emission design features contribute to the global battle against fugitive emissions while greatly reducing costs caused by product loss.

Standard material configuration for sour service

KITZ Class 150/300 steel ball valves are all made of component materials specially heat-treated and handness-controlled to conform with NACE MR0103 requirements, and proved suitable for servicing sour gases or other hydrogen sulfide bearing hydrocarbons. KITZ Class 600 and higher **stainless steel** ball valves are also suitable for sour service. However, NACE materials are optional for KITZ Class 600 and higher **carbon steel** ball valves.

Seven Safety Considerations for KITZ 150/300 SCTB/UTBM and 150/300 SCTA/UTAM Series Ball Valves

- Double "D" stem head design provides mounting of the lever handle always in parallel to the flow passage. Misaligment of the handle is thus prevented. (Fig. 1)
- The lower end of the stem is designed with an integral collar to be **blowout-proof**. It also functions as the backseat for assured stem sealing. (Fig. 2)
- An antistatic feature is provided to ensure electrical continuity between ball, stem, and body. (Fig. 2)
- Facility for mounting a locking device for prevention of accidental valve operation is provided.
- Plant fires are a serious concern for soft-seated ball valves because of possible fluid leakage and consequent increase of the fire magnitude caused by deterioration of resilient sealing materials.

KITZ ball valves are engineered for firesafety and successfully **fire tested** to minimize both external and internal fluid leakage after plant fires. They have **post-fire metal-to-metal contact** of all sealing areas such as:

- Contact between ball and valve shell (Fig. 3 & 4)
- Contact between stem and valve shell (Fig. 5 & 6)
- Valve shell coupling flanges of split body design (Fig. 7 & 8)
- Contact between valve body and insert of unibody design (Fig. 9)

The problem of external fluid leakage is more serious than internal leakage through the valve bore because of the fear of fueling the fire. To prevent this, KITZ ball valves may be ordered with **flexible graphite packing** and **gaskets**, which are extremely heat resistant, and not affected by the fire. For details, refer to Page 50 and 51.

- 6. The surface of stem and stuffing box, and interface clearance of stem-to-gland, stem-to-body and gland-to-stuffing box are precision controlled on machining and assembly for low emission service. For uni-body, end-entry design, a Belleville spring washer is employed for live loading on gland packing rings, to minimize need of gland retightening for low emission service.
- A provision of cavity pressure relief is incorporated into precision engineered KITZ HYPATITE®
 PTFE ball seats for the ultimate safety. Refer to Page13 for details.

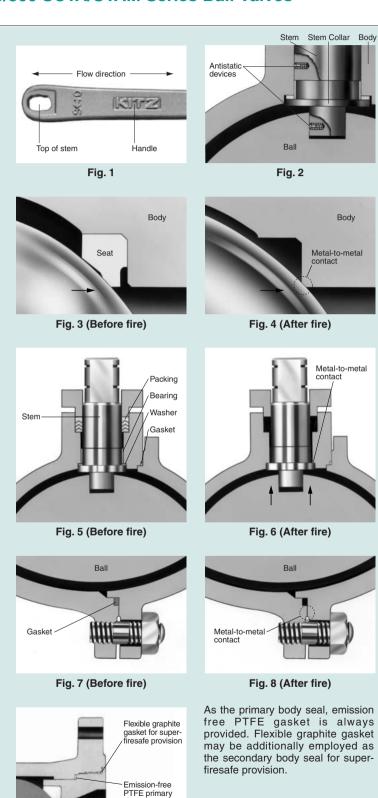
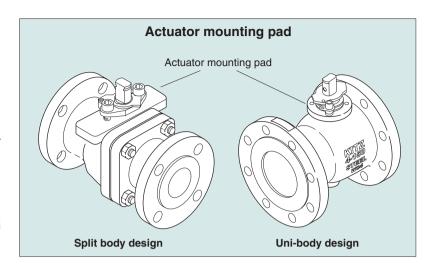
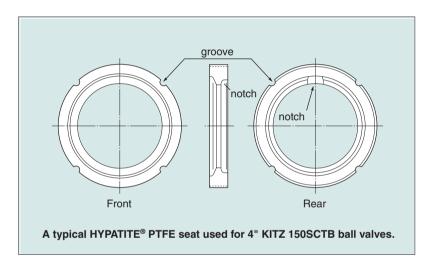



Fig. 9 (Uni-body insert)

Integral Actuator Mounting Pads

KITZ split body design ball valves are furnished with integral pads for provision of actuator mounting, which may be drilled to customers' requirement. This is standard for 150/300 SCTB Series (carbon steel valves), or option for 150/300 UTBM Series (stainless steel valves). KITZ uni-body end-entry design ball valves are always furnished with integral actuator mounting pad designed and factory-drilled according to ISO 5211 specification.


Note: Customers are requested to prepare mounting brackets and connectors for the actuators chosen for their valve automation. Actuators can be mounted on KITZ ball valves without disassembly of valve glands.

HYPATITE® PTFE Ball Seats

KITZ ball valves are furnished, as the manufacturer's standard, with HYPATITE® PTFE ball seats made of denatured PTFE, a molecularly reinforced PTFE/PFA copolymer, and specially engineered for high performance which include:

- Wide service temperature range of −29°C (−20°F) through 260°C (500°F).
 - This is for standard valve design and materials used for medium to high temperature services. The lower temperature range can be extended down to -196° C (-321° F) by means of extended bonnet design and special low temperature service materials.
- High chemical resistance is comparable to virgin PTFE.
- Monomer permeability is lower than other PTFE materials.
- Resistance against compression and creeping (cold flow) is higher than other PTFE materials to guarantee long life cycle.
- Specific gravity and friction coefficient are equal to those of virgin PTFE for smooth valve operation.
- Purity of processed products is guaranteed as highly as virgin PTFE.
- Resiliency is as high as other PTFE materials for bubble-tight sealing performance.
- ★ Refer to Page 48 for more technical deta.

Optional Ball Seats

In addition to the standard **HYPATITE® PTFE** ball seats, **SWELLESS®** seats are recommended for monomer service. Also virgin PTFE and carbon filled PTFE seats are optionally available for versatility in service applications. Refer to Page 14 for details.

Cavity Pressure Relief

Some line fluid is usually left trapped inside the ball-body cavity. This fluid can expand under the influence of high ambient or line temperature. An abnormal increase of such cavity pressure may sometimes damage the valve seats or balls, unless the valve has an adequate cavity pressure relief provision. **Trunnion mounted ball valves generally provide perfect protection from this problem**. Refer to KITZ Cat. No. E-202 for technical details of KITZ trunnion mounted ball valves.

In case of floating ball valves, however, their rather simple seating principle requires some special protection from excessive cavity pressure rise when highly volatile liquid in

service is subject to frequent and large temperature variation, while the valve is not frequently operated. KITZ 150/300 SCTB/UTBM and 150/300 SCTA/UTAM Series ball valves offer self-relieving of excessive cavity pressure as a standard feature engineered in HYPATITE® PTFE ball seats.

Other general solutions for floating ball valves include employment of automatic pressure relief valves or drilling pressure equalization holes on the ball. It the requirement of automatic cavity pressure relief is as critical as in chlorine service, be sure to contact KITZ Corporation or its distributors for technical advice.

KITZ Ball Seat Materials

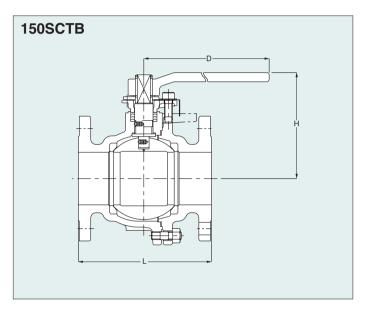
The following seat materials are available.

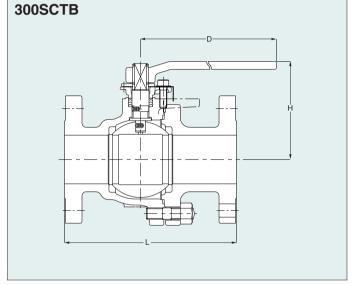
Material Material	Features	Maximum Service Temperature
Virgin PTFE	High chemical resistance and operation efficiency	200℃
HYPATITE® PTFE	Monomer permeability is lower and resistance against compression and creeping is higher than other PTFE materials	260℃
Carbon filled PTFE	Excellent heat and abrasion resistance	260℃
*FILLTITE®	Highest heat resistance among PTFE based materials	300℃
Graphite	Excellent for high temperature service	500℃
Metal	Excellent for high temperature and abrasive service	500℃
PEEK	Higher heat resistance and mechanical strength	270℃
SWELLESS®	Modified PFA excellent for monomer service such as butadiene and styrene	260℃
Glass fiber filled PTFE with MoS ₂	Higher abrasion resistance and operation efficiency	230℃
Nylon with MoS ₂	Higher mechanical strength	140℃

^{*:} FILLTITE® is a specially reinforced ball seat, made by using more carbon based fillers into PTFE than conventional carbon filled PTFE, which greatly improves heat and abrasion resistance. The material shows excellent operability, durability, chemical resistance and sealing performance at a high temperature of 300°C. In addition, the ball seat is replaceable with the most of our conventional ball seats, so it also has the cost advantage.

Class 150/300 Carbon Steel Ball Valves

Full port, Split body, Side entry design


Features

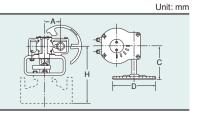

- Antistatic device
- Blowout-proof stem
- ●Fire test certification★
- Double "D" stem head
- ●High performance HYPATITE® PTFE ball seats
- Actuator mounting pad to KITZ standard

Page 6 for Pressure-Temperature Ratings

Page 38 for Construction and Materials

Page 35 for Dimension of Actuator Mounting Pad

Dimensions of 150SCTB


J	<u> </u>												Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	2	21/2	3	4	5	6	8	10
	mm	15	20	25	40	50	65	80	100	125	150	200	250
Ball Bore	•	15	20	25	40	50	65	80	100	125	150	200	250
L		108	117	127	165	178	190	203	229	356	394	457	533
Н		102	105	124	115	120	155	165	200	220	295	355	Gear operation
D		130	130	160	230	230	400	400	460	460	1000	1500	Gear operation

Dimensions of 300SCTB

Dillicision	3 01	30030	10								Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	2	21/2	3	4	6	8
vaive Size	mm	15	20	25	40	50	65	80	100	150	200
Ball Bore	•	15	20	25	40	50	65	80	100	150	200
L		140	152	165	190	216	241	283	305	403	502
Н		102	105	124	115	120	155	165	240	295	355
D		130	130	160	230	230	400	400	750	1000	1500

Gear Operation

Class	150	300		Gear Operator					
Class	150	300	Н	D	С	Α			
	6	6	337	310	165	65.5			
Valve Size (inch)	8	8	414	360	210	88.5			
,	10	_	477	500	363	93.5			

Valve operator

1/2 ∼8 : Lever operation 6 ∼8 : Optional gear operation 10 : Standard gear operation

Test pressure

Shell (Hydrostatic): 3.10MPa (450psi) Seat (Air): 0.55MPa (80psi)

Options

- ★Flexible graphite packing and gasket (See Page 12)
- Ball and stem to CF8M (316)

Valve operator

 $1/2 \sim 8$: Lever operation 6 ~ 8 : Optional gear operation

Test pressure

Shell (Hydrostatic): 7.76MPa (1125psi) Seat (Air): 0.55MPa (80psi)

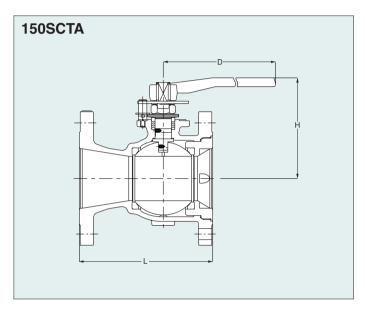
Options

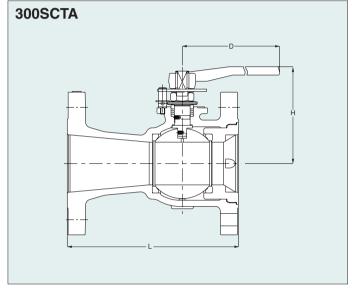
- ★Flexible graphite packing and gasket (See Page 12)
- Ball and stem to CF8M (316)

Worm gear operators may be mounted on KITZ ball valves at your option for the smoothest valve operation. Electric or pneumatic actuators are also optionally available. Contact KITZ distributors for appropriate choice and sizing of valve actuators.

Class 150/300 Carbon Steel Ball Valves

Regular port, Uni-body, End entry design


Features

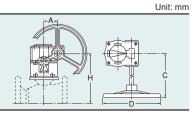

- Antistatic device
- Blowout-proof stem
- ●Fire test certification★
- Double "D" stem head
- ●High performance HYPATITE® PTFE ball seats
- Actuator mounting pad to ISO 5211

Page 6 for Pressure-Temperature Ratings

Page 39 for Construction and Materials

Page 36 and 37 for Dimension of Actuator Mounting Pad

Dimensions of 150SCTA


												OTHE. ITHII
	Valve Size	in.	1/2	3/4	1	11/2	2	3	4	6	8	10
		mm	15	20	25	40	50	80	100	150	200	250
Ball Bore		•	10	12.5	17	30	38	58	76	114	144	187
	L		108	117	127	165	178	203	229	267	292	330
	Н		103	106	116	133	119	157	172	260	298	355
	D		140	140	160	160	230	400	400	750	1000	1500

Dimensions	of 2000CTA

	Diffiensions	5 01	30030	IA								Unit: mm
	Valve Size	in.	1/2	3/4	1	11/2	2	3	4	6	8	10
		mm	15	20	25	40	50	80	100	150	200	250
Ball Bore		:	10	12.5	17	30	38	58	76	114	144	187
	L		140	152	165	190	216	283	305	403	419	457
	Н		103	106	116	133	119	157	172	260	298	355
	D		140	140	160	160	230	400	400	750	1000	1500

Gear Operation

Gear Operator 150 300 Class н D С Α 257 71 6 6 300 283 Valve Size 8 8 306 300 283 71 (inch) 10 10 364 400 337 86

Valve operator

 $^{1}/_{2} \sim$ 10: Lever operation 6 \sim 10: Optional gear operation

Test pressure

Shell (Hydrostatic): 3.10MPa (450psi) Seat (Air): 0.55MPa (80psi)

Options

I Init: mm

- ★Flexible graphite packing and gasket (See Page 12)
- Ball and stem to CF8M (316)

Valve operator

 $1/2 \sim 10$: Lever operation 6 ~ 10 : Optional gear operation

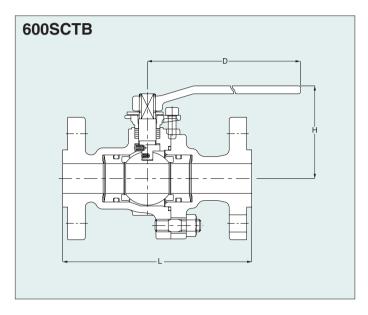
Test pressure

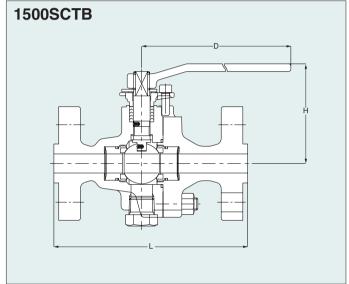
Shell (Hydrostatic): 7.76MPa (1125psi) Seat (Air): 0.55MPa (80psi)

Options

- ★Flexible graphite packing and gasket (See Page 12)
- Ball and stem to CF8M (316)

Worm gear operators may be mounted on KITZ ball valves at your option for the smoothest valve operation. Electric or pneumatic actuators are also optionally available. Contact KITZ distributors for appropriate choice and sizing of valve actuators.


Class 600/1500 Carbon Steel Ball Valves


Full port, Split body, Side entry design

Features

- Antistatic device
- Blowout-proof stem
- ●Fire test certification*
- Double "D" stem head
- Ball seats: Reinforced PTFE with MoS2 for Class 600 Nylon with MoS₂ for Class 1500

Page 7 for Pressure-Temperature Ratings Page 42 and 44 for Construction and Materials

Dimensions of 600SCTR

Dilliension	5 01	0003016				Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	
valve Size	mm	15	20	25	40	
Ball Bore		13	19	25	38	
L		165	190	216	241	
Н		105	108	130	118	
D		130	130	160	230	

Dimensions	of 15	00SCTB
------------	-------	--------

						OHIL HIH
Valve Size	in.	1/2	3/4	1	11/2	
valve Size	mm	15	20	25	40	
Ball Bore		13	19	25	38	
L		216	229	254	305	
Н		122	115	122	157	
D		160	230	230	400	

Valve operator

Lever operation

Test pressure Shell (Hydrostatic): 15.34MPa (2225psi) Seat (Air): 0.55MPa (80psi)

Options

- ★Flexible graphite packing and flexible graphite spiral wound gasket (See Page 12 and 42)
- Ball and stem to 316

Valve operator

Lever operation

Test pressure

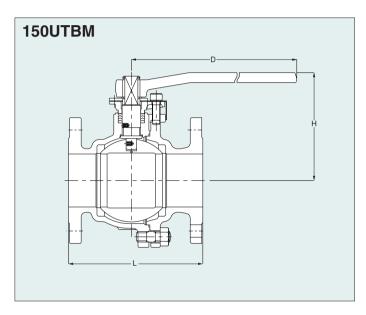
Shell (Hydrostatic): 38.43MPa (5575psi) Seat (Air): 0.55MPa (80psi)

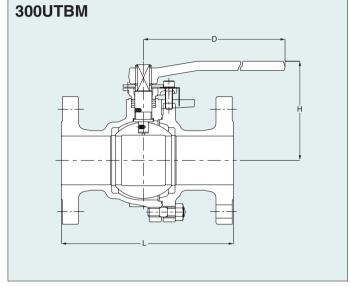
Options

- ★Flexible graphite packing and flexible graphite spiral wound gasket (See Page 12 and 44)
- Ball and stem to 316

Class 150/300 Stainless Steel Ball Valves

Full port, Split body, Side entry design


Features


- Antistatic device
- Blowout-proof stem
- ●Fire test certification★
- Double "D" stem head
- ●High performance HYPATITE® PTFE ball seats
- Actuator mounting pad (Option) to KITZ standard

Page 6 for Pressure-Temperature Ratings

Page 40 for Construction and Materials

Page 35 for Dimension of Actuator Mounting Pad

Dimensions of 150UTBM

5	Dimensions of 150UTBM Unit: mm													
	Valve Size	in.	1/2	3/4	1	11/2	2	21/2	3	4	5	6	8	10
	vaive Size	mm	15	20	25	40	50	65	80	100	125	150	200	250
	Ball Bore		15	20	25	40	50	65	80	100	125	150	200	250
	L		108	117	127	165	178	190	203	229	356	394	457	533
	Н		102	105	124	115	120	155	165	200	220	295	355	Gear operation
	D		130	130	160	230	230	400	400	460	460	1000	1500	Gear operation

Valve operator

1/2 ∼8: Lever operation 5 ∼8: Optional gear operation 10 : Standard gear operation

Test pressure

Shell (Hydrostatic): 2.93MPa (425psi) Seat (Air): 0.55MPa (80psi)

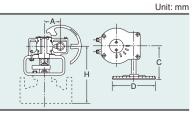
★Flexible graphite packing and gasket (See Page 12)

Dimensions of 300LITRM

	Dimension	5 01	300010	IVI							Unit: mm
	Valve Size	in.	1/2	3/4	1	11/2	2	3	4	6	8
	1	mm	15	20	25	40	50	80	100	150	200
Ball Bore		:	15	20	25	40	50	80	100	150	200
	L		140	152	165	190	216	283	305	403	502
	Н		102	105	124	115	120	165	240	295	355
	D		130	130	160	230	230	400	750	1000	1500

Valve operator

 $1/2 \sim 8$: Lever operation 6 ~ 8 : Optional gear operation


Test pressure

Shell (Hydrostatic): 7.58MPa (1100psi) Seat (Air): 0.55MPa (80psi)

★Flexible graphite packing and gasket (See Page 12)

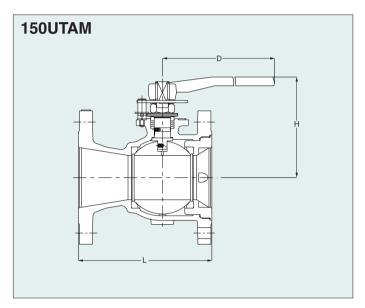
Gear Operation

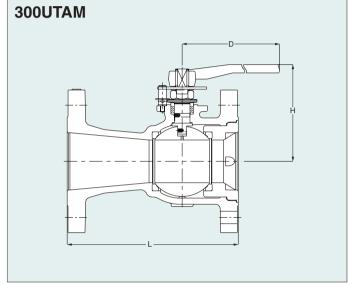
Class	150	300		Gear O	perato	
Olass	150	300	Н	D	С	Α
	6	6	337	310	165	65.5
Valve Size (inch)	8	8	414	360	210	88.5
(- ,	10	_	477	500	363	93.5

Worm gear operators may be mounted on KITZ ball valves at your option for the smoothest valve operation. Electric or pneumatic actuators are also optionally available. Contact KITZ distributors for appropriate choice and sizing of valve actuators.

Class 150/300 Stainless Steel Ball Valves

Regular port, Uni-body, End entry design

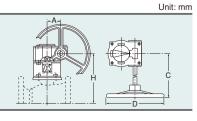

Features


- Antistatic device
- Blowout-proof stem
- ●Fire test certification★
- Double "D" stem head
- ●High performance HYPATITE® PTFE ball seats
- Actuator mounting pad to ISO 5211

Page 6 for Pressure-Temperature Ratings

Page 41 for Construction and Materials

Page 36 and 37 for Dimension of Actuator Mounting Pad


Dimensions of 150UTAM

Dilliciision	3 01	13001	AIVI								Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	2	3	4	6	8	10
vaive Size	mm	15	20	25	40	50	80	100	150	200	250
Ball Bore	•	10	12.5	17	30	38	58	76	114	144	187
L		108	117	127	165	178	203	229	267	292	330
Н		103	106	116	133	119	157	172	260	298	355
D		140	140	160	160	230	400	400	750	1000	1500

Dillicitation	3 01	30001	AIVI								Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	2	3	4	6	8	10
vaive Size	mm	15	20	25	40	50	80	100	150	200	250
Ball Bore		10	12.5	17	30	38	58	76	114	144	187
L		140	152	165	190	216	283	305	403	419	457
Н		103	106	116	133	119	157	172	260	298	355
D		140	140	160	160	230	400	400	750	1000	1500

Gear Operation

Class	150	300	Gear Operator					
Olass	150		Н	D	С	Α		
	6	6	257	300	283	71		
Valve Size (inch)	8	8	306	300	283	71		
	10	10	364	400	337	86		

Valve operator

1/2 ~10 : Lever operation 6 ~10 : Optional gear operation

Test pressure

Shell (Hydrostatic): 2.93MPa (425psi) Seat (Air): 0.55MPa (80psi)

Option

★Flexible graphite packing and gasket (See Page 12)

Valve operator

 $^{1/2}$ \sim 10: Lever operation 6 \sim 10: Optional gear operation

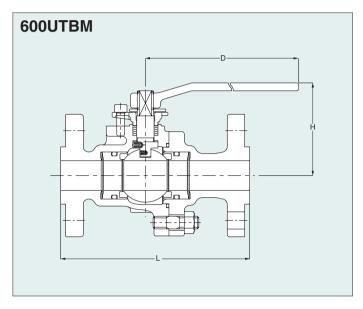
Test pressure

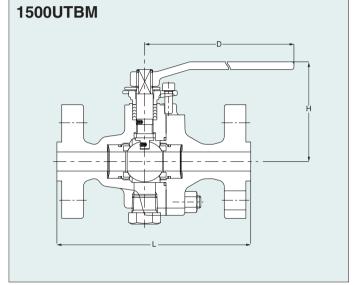
Shell (Hydrostatic): 7.58MPa (1100psi) Seat (Air): 0.55MPa (80psi)

Option

★Flexible graphite packing and gasket (See Page 12)

Worm gear operators may be mounted on KITZ ball valves at your option for the smoothest valve operation. Electric or pneumatic actuators are also optionally available. Contact KITZ distributors for appropriate choice and sizing of valve actuators.


Class 600/1500 Stainless Steel Ball Valves


Full port, Split body, Side entry design

Features

- Antistatic device
- Blowout-proof stem
- ●Fire test certification★
- Double "D" stem head
- Ball seats: Reinforced PTFE with MoS2 for Class 600 Nylon with MoS₂ for Class 1500

Page 7 for Pressure-Temperature Ratings Page 43 and 45 for Construction and Materials

Dimensions of 600UTBM

	· · ·	0000.2				Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	
valve Size	mm	15	20	25	40	
Ball Bore		13	19	25	38	
L H D		165	190	216	241	
		105	108	130	118	
		130	130	160	230	

Valv	e o	pera	tor
1 01/0		0000	ion

Lever operation

Test pressure

Shell (Hydrostatic): 14.99MPa (2175psi) Seat (Air): 0.55MPa (80psi)

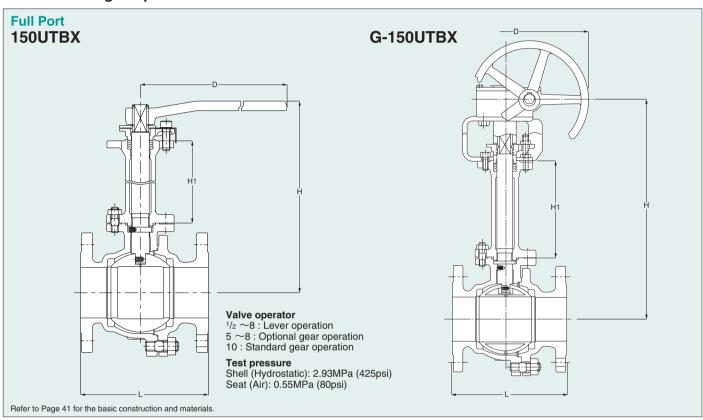
★Flexible graphite packing and flexible graphite spiral wound gasket (See Page 12 and 43)

Dimensions of 1500UTBM										
Valve Size	in.	1/2	3/4	1	11/2					
valve Size	mm	15	20	25	40					
Ball Bore		13	19	25	38					
L H D		216	229	254	305					
		92	115	122	157					
		160	230	230	400					

Valve operator Lever operation

Test pressure

Shell (Hydrostatic): 37.23MPa (5400psi) Seat (Air): 0.55MPa (80psi)


★Flexible graphite packing and flexible graphite spiral wound gasket (See Page 12 and 45)

Class 150 Low Temperature Service Ball Valves

Features

- •Long stem extension for assured stem seal and freezing prevention.
- Bolted joint of stem extension with valve body. No welding joint.
- •Protection of stem alignment by means of two bearings built on top and bottom of stem extension.

Lowest working temperature: −80°C

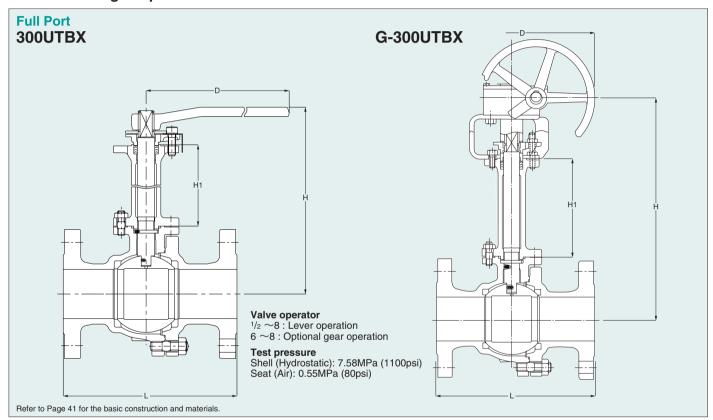
Dimensions of 150UTBX

Dilliciision	3 01	13001										Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	2	21/2	3	4	5	6	8
valve Size	mm	15	20	25	40	50	65	80	100	125	150	200
Ball Bore	•	15	20	25	40	50	65	80	100	125	150	200
L		108	117	127	165	178	190	203	229	356	394	457
Н		272	275	314	309	314	372	382	445	465	555	615
H1		140	140	150	170	170	190	190	220	220	220	220
D		130	130	160	230	230	400	400	460	460	1000	1500

Dimensions of G-150UTBX

Dimensions of G-1500 IBX										
Valve Size	in.	5	6	8	10					
	mm	125	150	200	250					
Ball Bore		125	150	200	250					
L		356	394	457	533					
Н		559	599	676	762					
H1 D		220	220	220	240					
		310	310	360	500					

Standard materials


Parts	Materials
Body	CF8
Body cap	CF8
Bonnet	CF8
Stem	304
Ball	304/CF8
Gland	CF8
Gland packing	PTFE
Ball seat	HYPATITE® PTFE
Gasket	Ceramic filled PTFE
Bonnet bolt/nut	B8/8
Gland bolt	B8
Cap bolt/nut	B8/8

Class 300 Low Temperature Service Ball Valves

Features

- •Long stem extension for assured stem seal and freezing prevention.
- •Bolted joint of stem extension with valve body. No welding joint.
- •Protection of stem alignment by means of two bearings built on top and bottom of stem extension.

Lowest working temperature: −80°C

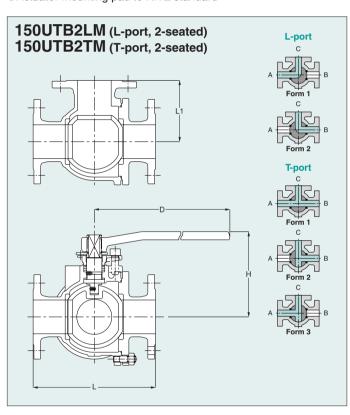
Dimensions of 300UTBX

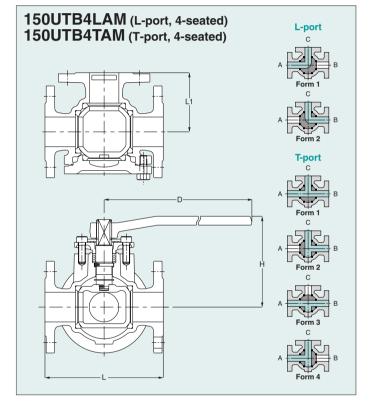
Dillicitation	3 01	000012	· A							Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	2	3	4	6	8
valve Size	mm	15	20	25	40	50	80	100	150	200
Bore Size	•	15	20	25	40	50	80	100	150	200
L		140	152	165	190	216	283	305	403	502
Н		272	275	314	309	314	382	485	555	615
H1		140	140	150	170	170	190	220	220	220
D		130	130	160	230	230	400	750	1000	1500

Dimensions of G-300UTBX

Dimension	s ot	G-30001BX		Unit: mm
Valve Size	in.	6	8	
valve Size	mm	150	200	
Bore Size	,	150	200	
L		403	502	
Н		599	676	
H1		220	220	
D		310	360	

Standard materials


Parts	Materials
Body	CF8
Body cap	CF8
Bonnet	CF8
Stem	304
Ball	304/CF8
Gland	CF8
Gland packing	PTFE
Ball seat	HYPATITE® PTFE
Gasket	Ceramic filled PTFE
Bonnet bolt/nut	B8/8
Gland bolt	B8
Cap bolt/nut	B8/8


Class 150 Stainless Steel 3-way Ball Valves

Full port, 2-seated or 4-seated, Split body, Side entry design

- Used for diverting or mixing process media
- One 3-way valve can replace several other valves plus the associated piping pieces
- Antistatic device
- Blowout-proof stem
- Double "D" stem head
- High performance HYPATITE® PTFE ball seats
- Actuator mounting pad to KITZ standard

Page 7 for Pressure-Temperature Ratings

Dimensions of 150UTB2LM/2TM

							OIIIL.IIIII
in.	1	11/2	2	21/2	3	4	6*
mm	25	40	50	65	80	100	150
	25	38	51	65	76	102	127
	165	210	220	250	262	342	437
	83	105	110	125	131	171	218
	124	115	123	155	165	200	220
D		230	230	399	399	460	460
	mm	mm 25 25 165 83	mm 25 40 25 38 165 210 83 105 124 115	mm 25 40 50 25 38 51 165 210 220 83 105 110 124 115 123	mm 25 40 50 65 25 38 51 65 165 210 220 250 83 105 110 125 124 115 123 155	mm 25 40 50 65 80 25 38 51 65 76 165 210 220 250 262 83 105 110 125 131 124 115 123 155 165	mm 25 40 50 65 80 100 25 38 51 65 76 102 165 210 220 250 262 342 83 105 110 125 131 171 124 115 123 155 165 200

*Regular port

I Init:m

Dimension	s of	150UT	B4LAN	1/4TAN	ı							Unit:mm
Valve Size	in.	1/2	3/4	1	11/2	2	21/2	3	4	5*	6*	8*
valve Size	mm	15	20	25	40	50	65	80	100	125	150	200
Ball Bore		15	19	25	38	51	64	76	102	100	125	150
L		120	135	154	177	200	240	262	342	348	407	463
L1		65	68	77	88	100	120	131	171	174	203	231
Н		128	132	135	146	155	185	198	267	267	290	335
D		160	160	160	399	399	460	460	1000	1000	1000	1500

*Regular port

Valve operator

1 ~6 : Lever operation 6 : Optional gear operation

Test pressure

Shell (Hydrostatic): 2.93MPa (425psi) Seat (Air): 0.55MPa (80psi)

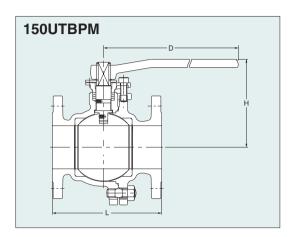
·JIS 10K type is also available.

Valve operator

1/2 ~8 : Lever operation 5 ~8 : Optional gear operation

Test pressure

Shell (Hydrostatic): 2.93MPa (425psi) Seat (Air): 0.55MPa (80psi)


·JIS 10K type is also available.

Class 150 Stainless Steel Pocketless Ball Valves

Full port, Split body, Side entry design

Features

- Unique filled cavity provides excellent resistance to media build up and/or stagnation between seats
- Antistatic device
- Blowout-proof stem
- Double "D" stem head
- High performance HYPATITE® PTFE ball seats
- Actuator mounting pad to KITZ standard

Page 6 for Pressure-Temperature Ratings

Valve operator

 $1/2 \sim 8$: Lever operation $5 \sim 8$: Optional gear operation

Test pressure

Shell (Hydrostatic): 2.93MPa (425psi)

Seat (Air): 0.55MPa (80psi)

Dimensions

Dillielisic	7113											Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	2	21/2	3	4	5	6	8
valve Size	mn	15	20	25	40	50	65	80	100	125	150	200
Ball Bo	ore	15	20	25	40	50	65	80	100	125	150	200
L		108	117	127	165	178	190	203	229	356	394	457
Н		102	105	124	115	120	155	165	200	220	295	355
D		130	130	160	230	230	400	400	460	460	1000	1500

Class 150 Stainless Steel Jacketed Ball Valves

Full port

Features

- Fully jacketed to maintain media temperature
- Antistatic device
- Double "D" stem head
- High performance HYPATITE® PTFE ball seats
- Actuator mounting pad to KITZ standard

Page 6 for Pressure-Temperature Ratings

Valve operator

 $1/2 \sim 6$: Lever operation 6 : Optional gear operation

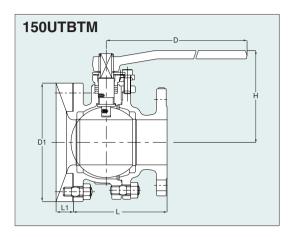
Test pressure

Shell (Hydrostatic): 2.93MPa (425psi) Seat (Pneumatic): 0.55MPa (80psi) Jacket (Hydrostatic): 2.07MPa (300psi)

- ·Maximum allowable pressure is 1.37MPa (199psi) at 260°C (500°F).

 •JIS 10K type is also available.

Dimension	s									Unit: mm
Valve Size	in.	1/2	3/4	1	11/2	2	21/2	3*	4*	6*
	mm	15	20	25	40	50	65	80	100	150
Ball Bore)	15	20	25	40	50	65	65	80	125
L		110	120	130	165	180	190	200	230	270
Н		131	135	150	150	157	188	188	213	258
D		130	130	160	230	230	400	400	400	460


*Regular port

Class 150 Stainless Steel Tank Ball Valves

Full port, Split body, Side entry design

Features

- Direct mounting to tank bottom
- Churning media evenly
- Antistatic device
- Blowout-proof stem
- Double "D" stem head
- High performance HYPATITE® PTFE ball seats
- Actuator mounting pad to KITZ standard

Page 6 for Pressure-Temperature Ratings

Valve operator

1 ∼6: Lever operation

Test pressure

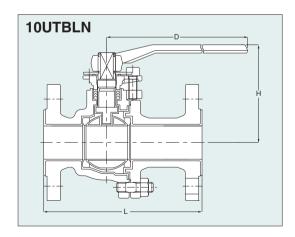
Shell (Hydrostatic): 2.93MPa (425psi)

Seat (Air): 0.55MPa (80psi)

Jacket (Hydrostatic): 2.07MPa (300psi)

- ·Maximum allowable temperature is 200°C
- ·Class 300 and JIS 10K/20K types are also

Dimensions


Unit: mm 11/2 21/2 6 2 3 4 5 10 8 Valve Size 100 150 200 25 40 50 65 80 125 250 Ball Bore 25 40 50 65 80 100 125 150 102 125 142 160 171 176 255 292 Т For these sizes, н 150 134 143 177 187 222 242 312 please contact 230 460 1000 160 230 400 400 460 D KITZ Corporation. 35 35 43 45 53 53 53 L₁ 41 135 155 280 305 330 D1 175 185 210

Class 150 Stainless Steel PFA Lined Ball Valves

Full port, Split body, Side entry design

Features

- Highly corrosion-resistant PFA lining
- Fine lining without a pinhole
- Highly heat-resistant PFA
- No additives or paints are included
- Double "D" stem head
- High performance HYPATITE®
- PTFE ball seats
- Actuator mounting pad to KITZ standard

Page 7 for Pressure-Temperature Ratings

Valve operator

1/2 ~4: Lever operation

Test pressure

Shell (Hydrostatic): 2.93MPa (425psi) Seat (Air): 0.55MPa (80psi)

JIS 10K type is also available.

Dimensions

Unit: mm


V-b 0:	in.	1/2	3/4	1	11/2	2	21/2	3	4
Valve Size	mm	15	20	25	40	50	65	80	100
Ball Bore)	15	20	25	38.5	51	65	76	102
L		140	152	165	191	216	240	250	280
Н		98	105	111	136	146	167	178	207
D		135	135	150	250	250	400	400	500

Type 600/1000 Carbon Steel Ball Valves

Reduced port, Uni-body design, Threaded ends

Features

- Blowout-proof stem
- Choice of threaded ends:
 - · Rc threads to BS 21 (Fig. SCTK)
 - NPT threads to ASME B1.20.1 (Fig. AKSCTK)

S	tandard mate	rials
F	Parts	Materials
E	Body	WCB
E	Ball	316 or 304*1
S	Stem	316 or 304*2
Е	Ball seat	Glass filled PTFE or HYPATITE® PTFE*3
C	Gland packing	Glass filled PTFE
H	Handle	Plastic covered S.S.

Page 8 for Pressure-Temperature Ratings

- *1 304 for 3/4 & larger
- *2 304 for 1/2 & larger
- *3 HYPATITE® PTFE for Type 1000

End-to-end dimensions: KITZ standard

Dimensions

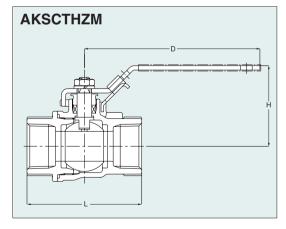
Dimensions	s								Unit: mm
Valve Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2	2
vaive Size	mm	8	10	15	20	25	32	40	50
Ball Bore	:	4.5	6.8	9.2	12.5	16	20	24.5	32
L		39	44	56.5	59	71	78	83	100
Н		31	36	41	44	48	54	65	72
D		60	70	85	85	100	100	125	125

Valve operator

Lever operation

T-type handle as option (3/4 & larger only)

Test pressure


Shell (Hydrostatic): Type 600: 6.20MPa (900psi) Type 1000: 10.34MPa (1500psi) Seat (Air): 0.55MPa (80psi)

Type 1500/2000 Carbon Steel Ball Valves

Regular port, Split body design, Threaded ends

Features

- Blowout-proof stem
- API 607 firesafe type as option
- NPT threaded ends to **ASME B1.20.1**

Page 9 for Pressure-Temperature Ratings

Standard materials

Parts	Materials
Body	WCB
Body cap	WCB
Ball	316
Stem	316
Seat	HYPATITE® PTFE
Gland packing	PTFE*
Gasket	PTFE*
Handle	Plastic covered C.S.

*API 607 firesafe flexible graphite is optionally

End-to-end dimensions: KITZ standard

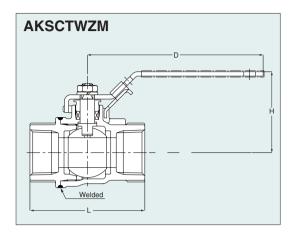
	Dimension	s								Unit: mm
	Valve Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2	2
		mm	8	10	15	20	25	32	40	50
I	Ball Bore	:	9.4	9.4	10	15	20	25	32	40
I	L		53.1	53.1	62	71.9	85.1	94	106.9	120
Ī	Н		50.5	50.5	58.2	62.7	63.5	67.6	83.1	90.9
Ī	D		100.1	100.1	115.1	115.1	134.9	134.9	154.9	190

Valve operator

Lever operation with latch lock Oval handle as option

Test pressure

Shell (Hydrostatic):


Type 1500: 15.51MPa (2250psi) Type 2000: 20.68MPa (3000psi) Seat (Air): 0.55MPa (80psi)

Type 1500/2000 Carbon Steel Ball Valves

Regular port, Welded body design, Threaded ends

Features

- Blowout-proof stem
- ■API 607 firesafe type as option
- NPT threaded ends to ASME B1.20.1

Standard materials

Parts	Materials
Body	WCB
Body cap	WCB
Ball	316
Stem	316
Seat	HYPATITE® PTFE
Gland packing	PTFE*
Gasket	PTFE*
Handle	Plastic covered C.S.

Page 9 for Pressure-Temperature Ratings

* API 607 firesafe flexible graphite is optionally available.

End-to-end dimensions: KITZ standard

Valve operator

Lever operation with latch lock Oval handle as option

Test pressure

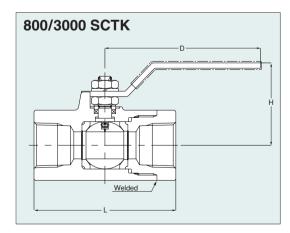
Shell (Hydrostatic):

Type 1500: 15.51MPa (2250psi) Type 2000: 20.68MPa (3000psi) Seat (Air): 0.55MPa (80psi)

Dimensions

Dimension	S								Unit: mm
Valve Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2	2
	mm	8	10	15	20	25	32	40	50
Ball Bore		9.4	9.4	10	15	20	25	32	40
L		53.1	53.1	62	71.9	85.1	94	106.9	120
Н		50.5	50.5	58.2	62.7	63.5	67.6	83.1	90.9
D		100.1	100.1	115.1	115.1	134.9	134.9	154.9	190

Class 800 and Type 3000 Carbon Steel Ball Valves


Regular port, Welded body design, Threaded ends

Features

- Antistatic device
- Blowout-proof stem
- Fire test certification*
- Choice of threaded ends: · Rc threads to BS 21
 - (Fig. 800/3000 SCTK) • NPT threads to ASME B1.20.1 (Fig. AK800/3000 SCTK)

Note

- 1. Class 800 ball valves are designed to BS 5351.
- 2. Type 3000 ball valves are designed to KITZ standard for servicing water, oil and gaseous fluid under the maximum working pressure of 3000psi

Dimensions Unit: mm 3/4 3/8 11/4 1/4 1/2 11/2 1 2 Valve Size 8 10 15 20 25 32 40 50 **Ball Bore** 10 10 10 15 20 25 32 38 88 88 88 90 105 117 130 150 Н 44 44 44 54 57 64 69 80 100 Class 800 100 100 115 115 135 135 150 Type 3000 100 100 100 115 115 160 160 230

Page 8 for Pressure-Temperature Ratings

Standard materials

Parts	Materials		
Body	A105		
Body cap	A105		
Stem	316 (Class 800) 329 (Type 3000)		
Ball	316		
Gland packing	PTFE		
Ball seat	PTFE (Class 800) PCTFE* (Type 3000)		

* Polychloro-Trifluoro-Ethylene.

Valve operator

Lever operation

Test pressure

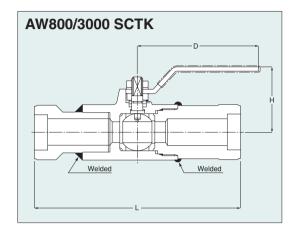
Shell (Hydrostatic): Class 800: 8.27MPa (1200psi)

Seat (Air): 0.55MPa (80psi)

Option

★Flexible graphite packing and gasket.

Type 3000: 31.03MPa (4500psi)


Class 800 and Type 3000 Carbon Steel Ball Valves

Regular port, Split body design, Socket welding ends

- Antistatic device
- Blowout-proof stem
- ●Fire test certification★
- Socket welding ends to **ASME B16.11**

Note

- 1. Class 800 ball valves are designed to BS 5351.
- 2. Type 3000 ball valves are designed to KITZ standard for servicing water, oil and gaseous fluid under the maximum working pressure of 3000psi.

Standard materials				
Parts	Materials			
Body	A105			
Body cap	A105			
Stem	316 (Class 800) 329 (Type 3000)			
Ball	316			
Gland packing	Flexible graphite			
Ball seat	PTFE (Class 800) PCTFE* (Type 3000)			

Page 8 for Pressure-Temperature Ratings

* Polychloro-Trifluoro-Ethylene.

End-to-end dimensions: KITZ standard

Valve operator

Lever operation

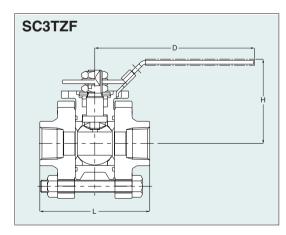
Test pressure

Shell (Hydrostatic):

Class 800: 8.27MPa (1200psi) Type 3000: 31.03MPa (4500psi) Seat (Air): 0.55MPa (80psi)

★Flexible graphite packing and gasket.

Dimensions


וט	IIICHSIOH	<u> </u>								Unit: mn
V	Value Cine		1/4	3/8	1/2	3/4	1	11/4	11/2	2
Valve Size mn	mm	8	10	15	20	25	32	40	50	
	Ball Bore	,	10	10	10	15	20	25	32	38
	L		170	170	170	176	196	210	226	262
	Н		44	44	44	54	57	65	70	81
D	Class 8	800	100	100	100	115	115	135	135	150
D	Type 30	000	100	100	100	115	115	160	160	230

Type 1000 Carbon Steel Ball Valves

Full port, Three-piece body design, Threaded or socket welding ends

Features

- Blowout-proof stem
- Swing-away body for maintenance
- Choice of threaded ends:
 - Rc threads to BS 21 (Fig. SC3TZF)
 - NPT threads to ASME B1.20.1 (Fig. AKSC3TZF)
 - · Socket welding ends to BS 5351 (Fig. SWSC3TZF)
 - · Socket welding ends to ASME B16.11 (Fig. AWSC3TZF)

Page 8 for Pressure-Temperature Ratings

Standard materials

Parts	Materials
Body	WCB
Body cap	WCB
Ball	CF8M/316
Stem	316
Seat	HYPATITE® PTFE
Gland packing	PTFE
Gasket	PTFE
Handle	Plastic covered S.S.

End-to-end dimensions: KITZ standard

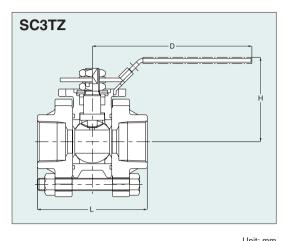
-	Dimension	S							Unit: mm
	Valve Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2
	valve Size	mm	8	10	15	20	25	32	40
I	Ball Bore	:	10	10	14	19	24	30	38
I	L		63	63	71	90	103	110	127
	Н		48	48	60	69	82	88	104
	D		120	120	130	130	150	150	180

Valve operator

Lever operation Oval handle as option

Test pressure

Shell (Hydrostatic): 10.34MPa (1500psi) Seat (Air): 0.55MPa (80psi)


·Use SC3TZ for size 2.

Type 1000 Carbon Steel Ball Valves

Regular port, Three-piece body design, Threaded or socket welding ends

Page 8 for Pressure-Temperature Ratings

- Blowout-proof stem
- Swing-away body for maintenance ease
- Choice of threaded ends:
 - Rc threads to BS 21 (Fig. SC3TZ)
 - NPT threads to ASME B1.20.1 (Fig. AKSC3TZ)
 - · Socket welding ends to BS 5351 (Fig. SWSC3TZ)
 - · Socket welding ends to ASME B16.11 (Fig. AWSC3TZ)

Standard materials

Parts	Materials
Body	WCB
Body cap	WCB
Ball	CF8M/316
Stem	316
Seat	HYPATITE® PTFE
Gland packing	PTFE
Gasket	PTFE
Handle	Plastic covered S.S.

End-to-end dimensions: KITZ standard

Dimensions

	Difficitoronic						Unit: mm
Valve Size -	in.	1/2	3/4	1	11/2	2	
	mm	15	20	25	40	50	
	Ball Bore		10	14	19	30	38
	L		63	71	90	110	127
	Н		48	60	69	82	102
	D		120	130	130	150	180

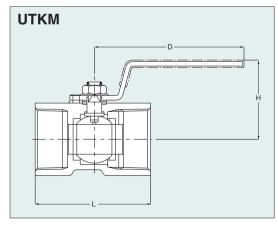
Valve operator

Lever operation Oval handle as option

Test pressure

Shell (Hydrostatic): 10.34MPa (1500psi) Seat (Air): 0.55MPa (80psi)

Note


·Use SC3TZF for sizes 1/4 & 3/8.

Type 600/1000 Stainless Steel Ball Valves

Reduced port, Uni-body design, Threaded ends

Features

- Blowout-proof stem
- Choice of threaded ends:
 - Rc threads to BS 21 (Fig. UTKM)
 - NPT threads to ASME B1.20.1 (Fig. AKUTKM)

Page 8 for Pressure-Temperature Ratings

Standard materials

Parts	Materials
Body	CF8M
Ball	316
Stem	316
Seat	Glass filled PTFE or HYPATITE® PTFE*
Gland packing	Reinforced PTFE
Handle	Plastic covered S.S.

*HYPATITE® PTFE for Type 1000

End-to-end dimensions: KITZ standard

	Dimension	s								Unit: mm
	Valve Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2	2
		mm	8	10	15	20	25	32	40	50
	Ball Bore	•	4.5	6.8	9.2	12.5	16	20	24.5	32
	L		39	44	56.5	59	71	78	83	100
	Н		31	36	41	44	48	54	65	75
	D		60	70	85	85	100	100	125	125

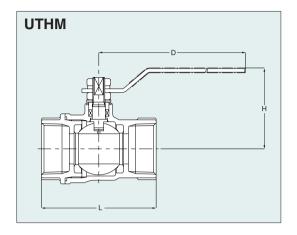
Valve operator

Lever operation

T-type handle as option

Test pressure

Shell (Hydrostatic):


Type 600: 6.20MPa (900psi) Type 1000: 10.34MPa (1500psi) Seat (Air): 0.55MPa (80psi)

Type 800 Stainless Steel Ball Valves

Regular port, Split body design, Threaded ends

Features

- Blowout-proof stem
- Choice of threaded ends:
 - Rc threads to BS 21 (Fig. UTHM)
 - NPT threads to ASME B1.20.1 (Fig. AKUTHM)

Page 8 for Pressure-Temperature Ratings

Standard materials

Parts	Materials
Body	CF8M
Body cap	CF8M
Ball	316
Stem	316 Cr plated
Seat	PTFE
Gland packing	PTFE
Handle	Plastic covered S.S.

End-to-end dimensions: KITZ standard

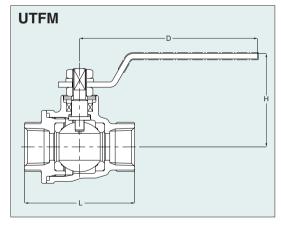
Dimensions

Dillielisions	<u> </u>						Unit: mm
Valve Size	in.	1/2	3/4	1	11/4	11/2	2
	mm	15	20	25	32	40	50
Ball Bore	:	10	15	20	25	32	40
L		60	70	80	95	108	124
Н		47	53	63	67	78	84
D		100	100	130	130	150	150

Valve operator

Lever operation

Test pressure


Shell (Hydrostatic): 8.27MPa (1200psi) Seat (Air): 0.55MPa (80psi)

Type 1000 Stainless Steel Ball Valves

Full port, Split body design, Threaded ends

Features

- Blowout-proof stem
- Choice of threaded ends:
 - Rc threads to BS 21 (Fig. UTFM)
 - NPT threads to ASME B1.20.1 (Fig. AKUTFM)

Page 8 for Pressure-Temperature Ratings

Standard materials

Parts	Materials
Body	CF8M
Body cap	CF8M
Ball	316
Stem	316 Cr plated
Seat	HYPATITE® PTFE
Gland packing	PTFE
Gasket	PTFE
Handle	Plastic covered S.S.

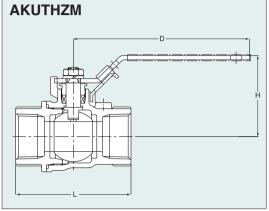
End-to-end dimensions: KITZ standard

Dimensions Unit: m							
Valve Size	in.	1/2	3/4	1	11/4	11/2	2
valve Size	mm	15	20	25	32	40	50
Ball Bore	•	15	20	25	32	40	50
L		62	73	85	98	108	124
Н		53	58	62	72	78	94
D		100	130	130	150	150	200

Valve operator Lever operation

Test pressure

Shell (Hydrostatic): 10.34MPa (1500psi)


Seat (Air): 0.55MPa (80psi)

Type 1500/2000 Stainless Steel Ball Valves

Regular port, Split body design, Threaded ends

Features

- Blowout-proof stem
- ●API 607 firesafe type as option
- •NPT threads to ASME B1.20.1

Dimensions Unit: mm

Valve Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2	2
	mm	8	10	15	20	25	32	40	50
Ball Bore	•	9.4	9.4	10	15	20	25	32	40
L		53.1	53.1	62	71.9	85.1	94	106.9	120
Н		50.5	50.5	58.2	62.7	63.5	67.6	83.1	90.9
D		100.1	100.1	115.1	115.1	134.9	134.9	154.9	190

Page 9 for Pressure-Temperature Ratings

Standard materials

Parts	Materials		
Body	CF8M		
Body cap	CF8M		
Ball	316		
Stem	316		
Seat	HYPATITE® PTFE		
Gland packing	PTFE		
Gasket	PTFE		
Handle	Plastic covered S.S.		

* API 607 firesafe flexible graphite is optionally available.

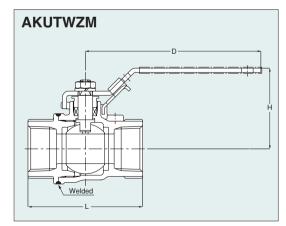
End-to-end dimensions: KITZ standard

Valve operator

Lever operation with latch lock Oval handle as option

Test pressure

Shell (Hydrostatic):


Type 1500: 15.51MPa (2250psi) Type 2000: 20.68MPa (3000psi) Seat (Air): 0.55MPa (80psi)

Type 1500/2000 Carbon Steel Ball Valves

Regular port, Welded body design, Threaded ends

Features

- Blowout-proof stem
- API 607 firesafe type as option
- NPT threads to ASME B1.20.1

Dimensions Unit: 1									Unit: mm	
	Valve Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2	2
		mm	8	10	15	20	25	32	40	50
	Ball Bore		9.4	9.4	10	15	20	25	32	40
	L		53.1	53.1	62	71.9	85.1	94	106.9	120
	Н		50.5	50.5	58.2	62.7	63.5	67.6	83.1	90.9
	D		100.1	100.1	115.1	115.1	134.9	134.9	154.9	190

Page 9 for Pressure-Temperature Ratings

Standard materials

Parts	Materials		
Body	CF8M		
Body cap	CF8M		
Ball	316		
Stem	316		
Seat	HYPATITE® PTFE		
Gland packing	PTFE		
Gasket	PTFE		
Handle	Plastic covered S.S.		

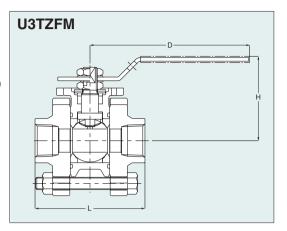
* API 607 firesafe flexible graphite is optionally available.

End-to-end dimensions: KITZ standard

Valve operator

Lever operation with latch lock Oval handle as option

Test pressure


Shell (Hydrostatic):

Type 1500: 15.51MPa (2250psi) Type 2000: 20.68MPa (3000psi) Seat (Air): 0.55MPa (80psi)

Type 1000 Stainless Steel Ball Valves

Full port, 3-pce body design, Threaded or socket welding ends

- Blowout-proof stem
- Swing-away body for maintenance ease
- Choice of threaded ends:
 - · Rc threads to BS 21 (Fig. U3TZFM)
 - NPT threads to ASME B1.20.1 (Fig. AKU3TZFM)
 - · Socket welding ends to BS 5351 (Fig. SWU3TZFM)
 - · Socket welding ends to ASME B16.11 (Fig. AWU3TZFM)

Page 8 for Pressure-Temperature Ratings

Standard materials

Parts	Materials		
Body	CF8M		
Body cap	CF8M		
Ball	316 or CF8M		
Stem	316		
Seat	HYPATITE® PTFE		
Gland packing	PTFE		
Gasket	PTFE		
Handle	Plastic covered S.S.		

End-to-end dimensions: KITZ standard

Dimensions

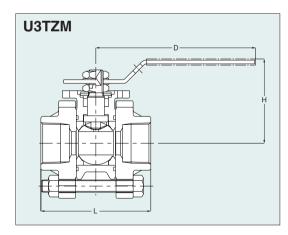
Difficitions	<u> </u>							Unit: mm
Valve Size	in.	1/4	3/8	1/2	3/4	1	11/4	11/2
	mm	8	10	15	20	25	32	40
Ball Bore		10	10	14	19	24	30	38
L		63	63	71	90	103	110	127
Н		48	48	60	69	82	88	104
D		120	120	130	130	150	150	180

Valve operator

Lever operation Oval handle as option

Test pressure

Shell (Hydrostatic): 10.34MPa (1500psi) Seat (Air): 0.55MPa (80psi)


·Use U3TZM for size 2.

Type 1000 Stainless Steel Ball Valves

Regular port, 3-pce body design, Threaded or socket welding ends

Features

- Blowout-proof stem
- Swing-away body for maintenance
- Choice of threaded ends:
 - Rc threads to BS 21 (Fig. U3TZM)
 - NPT threads to ASME B1.20.1 (Fig. AKU3TZM)
 - · Socket welding ends to BS 5351 (Fig. SWU3TZM)
 - · Socket welding ends to ASME B16.11 (Fig. AWU3TZM)

Page 8 for Pressure-Temperature Ratings

Standard materials

Parts	Materials		
Body	CF8M		
Body cap	CF8M		
Ball	316 or CF8M		
Stem	316		
Seat	HYPATITE® PTFE		
Gland packing	PTFE		
Gasket	PTFE		
Handle	Plastic covered S.S.		

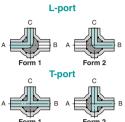
End-to-end dimensions: KITZ standard

[Dimensions Unit: m							
	Valve Size	in.	1/2	3/4	1	11/4	11/2	2
		mm	15	20	25	32	40	50
	Ball Bore	:	10	14	19	24	30	38
	L		63	71	90	103	110	127
	Н		48	60	69	83	88	104
	D		120	130	130	150	150	180

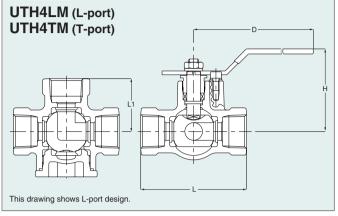
Valve operator

Lever operation Oval handle as option

Test pressure


Shell (Hydrostatic): 10.34MPa (1500psi) Seat (Air): 0.55MPa (80psi)

·Use U3TZFM for sizes 1/4 & 3/8.


Type 800 Stainless Steel 3-way Ball Valves

Regular port, 4-seated, Split body, Threaded ends

L-port and T-port Rc threads to BS 21

Page 8 for Pressure-Temperature Ratings

Standard materials

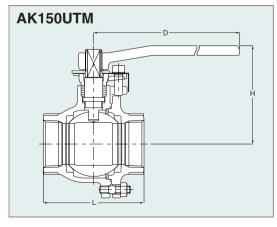
Parts	Materials		
Body	CF8M		
Body cap	CF8M		
Ball	316 or CF8M		
Stem	316		
Seat	HYPATITE® PTFE		
Gland packing	PTFE		
Gasket	PTFE		
Handle	Plastic covered S.S.		

End-to-end dimensions: KITZ standard

Dimensions

		_						Offit. IIII	"
	Valve Size	in.	1/2	3/4	1	11/4	11/2	2	
		mm	15	20	25	32	40	50	
Ball Bore		,	10	14	19	25	32	38	
	L		69	84	96	114	132	150	
	L1		34.5	42	48	57	66	75	
	Н		63	65	75.5	79.5	95.5	101	
	D		130	130	150	150	230	230	

Valve operator Lever operation


Test pressure

Shell (Hydrostatic): 8.27MPa (1200psi) Seat (Air): 0.55MPa (80psi)

Class 150 Stainless Steel Ball Valves

Full port, Split body, Side entry design, Threaded ends

- Choice of threaded ends:
 - Rc threads to BS 21 (Fig. 150UTM)
 - NPT threads to ASME B1.20.1 (Fig. AK150UTM)

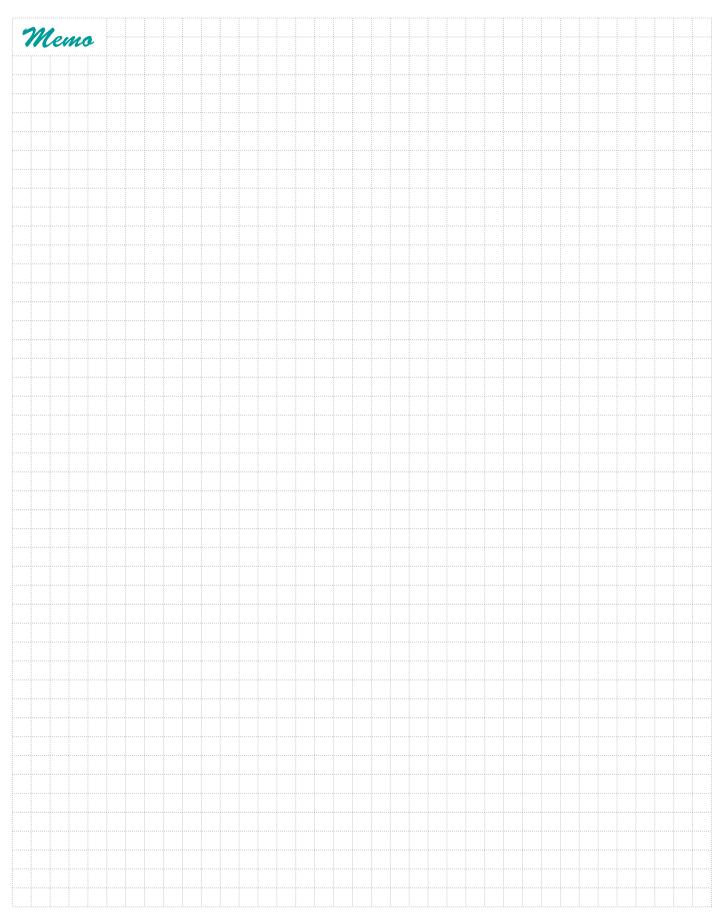
Standard materials

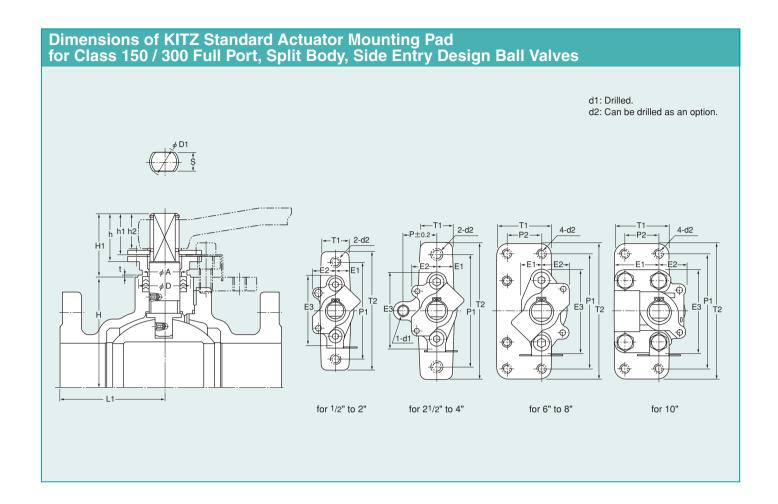
Parts	Materials
Body	CF8M
Body cap	CF8M
Ball	316
Stem	316 or CF8M
Seat	PTFE
Gland packing	PTFE
Gasket	PTFE
Handle	Plastic covered S.S.

Page 9 for Pressure-Temperature Ratings

End-to-end dimensions: KITZ standard Wall thickness: ASME B16.34 Class 150

Dimensions Unit: m												
,	Valve Size	in.	3/8	1/2	3/4	1	11/4	11/2	2	21/2	3	
		mm	10	15	20	25	32	40	50	65	80	
Ball Bore L H		•	10	15	20	25	32	40	50	65	80	
			62	65	80	90	110	120	140	160	182	
			71	102	105	124	130	115	120	155	165	
	D		130	130	130	160	160	230	230	400	400	

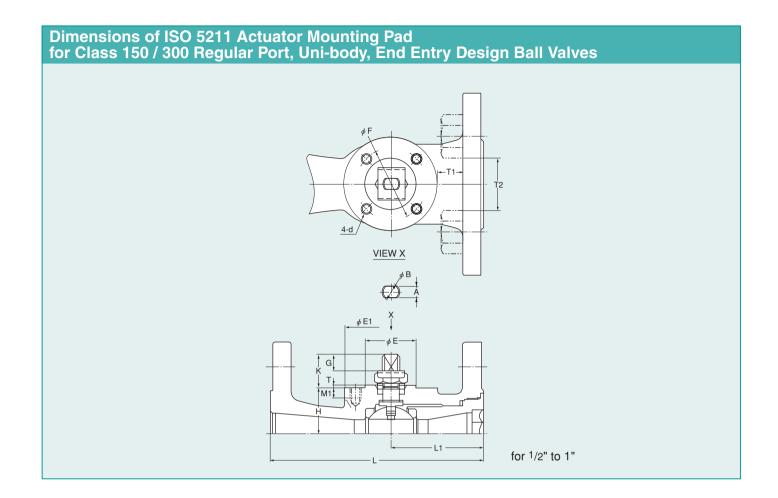

Valve operator


Lever operation

Test pressure

Shell (Hydrostatic): 2.93MPa (425psi) Seat (Air): 0.55MPa (80psi)

·JIS 10K type is also available.

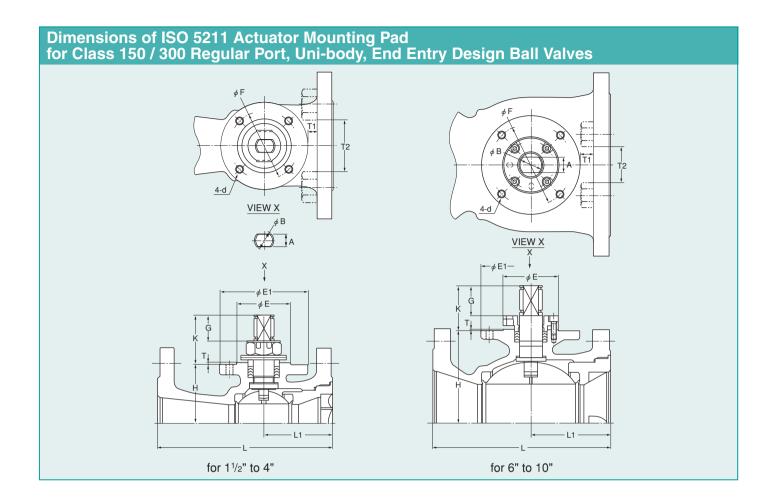


Dimensions Unit: mm

Nominal	н	H1	-0.1 -0.2		h	h1	h2	-0.05 -0.1	0 -0.2	P	P1	P2	4 A		L1	1*		E1	E2	E3	T1	T2	d1	d	2
size (in.)	П	пі	ΦD		n	nı	112	S	φD1	Ρ	PI	P2	ΦA	(1)	(2)	(3)	(4)		E2	E3	"	12	aı	M thread	UNC thread
1/2	33	31.5	24	2	23	17.1	14	8	12	_	72	_	19	42	43	58	57	12.5	20	55	21	92		M6	1/4-20 UNC
3/4	36	31.5	24	2	23	17.1	14	8	12	_	72	_	19	47	46	64.5	61	12.5	20	55	21	92	_	M6	1/4-20 UNC
1	43	36	30	2	25	19.8	16.5	10	15	_	90	_	24	50	52	69	68	16	23.5	68	25	110	_	M8	5/16-18 UNC
1 ¹ /2	59	45.5	40	2	32	25.8	22	14	21	_	114	_	32	67	67	79.5	80	19.5	28.5	85	34	138	_	M10	3/8-16 UNC
2	66	45.5	40	2	32	25.8	22	14	21	_	114	_	32	74	77	93	85	19.5	28.5	85	34	138	_	M10	³ /8-16 UNC
21/2	91	57	48	2	42	36	30.5	17	26	42	134	_	40	85	87	_	100	24	33.5	101	41.5	160	M12	M12	⁷ /16-14 UNC
3	100	57	48	2	42	36	30.5	17	26	42	134	_	40	95	100	135	125	24	33.5	101	41.5	160	M12	M12	⁷ /16-14 UNC
4	123	72	58	2	54	45.2	40.5	23	35	54	160	_	50	110	112.5	148	130	29	40	122	50	192	M16	M16	5/8-11 UNC
5	123	72	58	2	54	45.2	40.5	23	35	_	160	50	50	178	_	_	_	29	40	122	50	192	_	M16	5/8-11 UNC
6	168	85	70	2	67	57.2	51	27	40	_	174	55	58	197	197	201.5	190	33	45.5	134	91	210	_	M16	⁵ /8-11 UNC
8	208	96	78	2	74	64	58	32	48	_	184	60	66	228.5	228.5	251	251	37	49	143	96	220	_	M16	⁵ /8-11 UNC
10	268	106	92	2	82	73	66.5	40	58	_	216	75	78	266.5	266.5	_	_	96	57	167	117	258	_	M20	³ /4-10 UNC

^{*} KITZ product codes:

^{(1) 150}UTBM (Actuator pad as an option)
(2) 150SCTB (Actuator pad as standard)
(3) 300UTBM (Actuator pad as an option)
(4) 300SCTB (Actuator pad as standard)

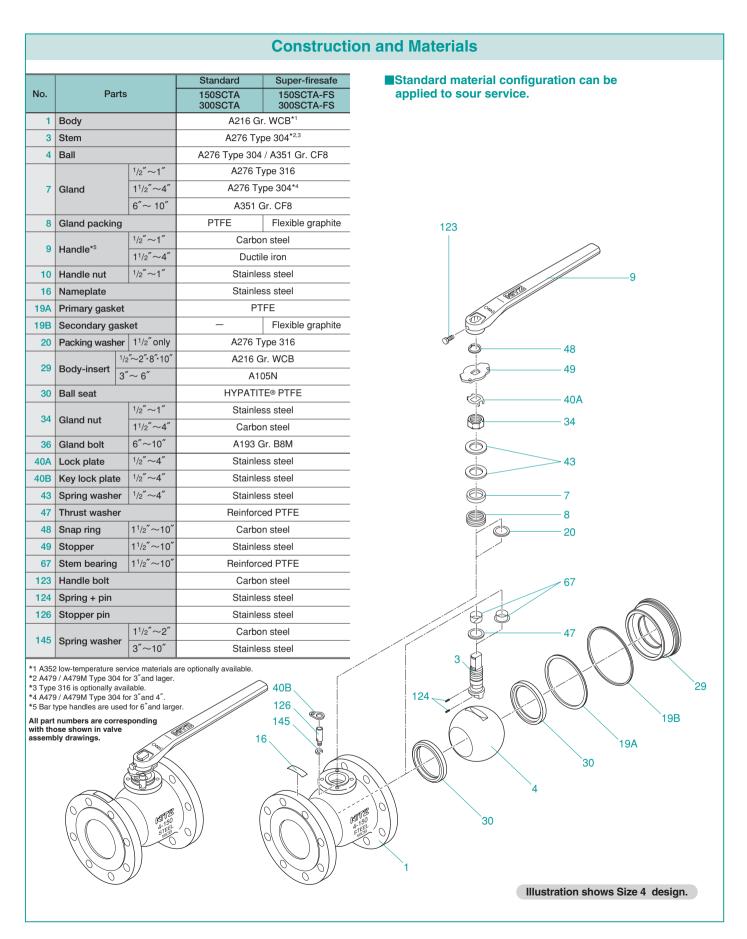

DimensionsUnit: mm

Class	Nominal size	-0.02 -0.06	-0.1 -0.2	-0.1 -0.2	φ E 1	±0.2	G	н	V		L1		d	M1	_	T1	T2	ISO 5211
Class	(in.)	A	ΦB	ΦE	ΨΕΙ	ΦF	5	_ n	K	_		M thread	UNC thread★		•	- 1 1	12	flange type
	1/2	5	8	25	48	36	7.5	18.5	15	108	48	M6	1/4-20 UNC	5	1.5	11.5	17	F03
150	3/4	5	8	25	48	36	7.5	21	15	117	48	M6	1/4-20 UNC	5	1.5	11.5	24	F03
	1	6	10	30	55	42	10	27	20	127	55	M6	1/4-20 UNC	6	1.5	14	30.5	F04
	1/2	5	8	25	48	36	7.5	18.5	15	140	52	M6	1/4-20 UNC	5	1.5	12	21.5	F03
300	3/4	5	8	25	48	36	7.5	21	15	152	57	M6	1/4-20 UNC	5	1.5	14	27	F03
	1	6	10	30	55	42	10	27	20	165	62	M6	1/4-20 UNC	6	1.5	14	31.5	F04

KITZ product codes: 150SCTA 150UTAM 300SCTA

300UTAM

★UNC threads optionally available.



DimensionsUnit: mm

Class	Nominal size	-0.02 -0.07	-0.1 -0.2	-0.1 -0.2	φ E 1	±0.2	G	н	К		L1		d	т	T1	T2	ISO 5211
Class	(in.)	A	ΦB	ΦE	ΨΕΙ	ΦF	G	П	~	L	LI	M thread	UNC thread★	'	- 11	12	flange type
	1 ¹ /2	10	14	35	65	50	20.5	48	39.5	165	58	M6	1/4-20 UNC	2	9.5	44	F05
	2	14	20	55	90	70	26.5	59	50	178	70	M8	⁵ /16-18 UNC	2	6	54	F07
	3	17	24	55	90	70	36	84	65.5	203	75	M8	5/16-18 UNC	2	8	76.5	F07
150	4	17	24	55	90	70	36	99	65.5	229	85	M8	5/16-18 UNC	2	13	41.5	F07
	6	23	35	85	150	125	43.5	136.5	66.5	267	120	M12	¹ /2-13 UNC	2	16.5	_	F12
	8	27	40	100	175	140	50	166	76.5	292	131	M16	⁵ /8-11 UNC	2	12	_	F14
	10	32	48	130	210	165	58.5	202	90.5	330	164	M20	³ /4-10 UNC	2	27	_	F16
	1 ¹ /2	10	14	35	65	50	20.5	48	39.5	190	65	M6	1/4-20 UNC	2	9	44	F05
	2	14	20	55	90	70	26.5	59	50	216	90	M8	5/16-18 UNC	2	19.5	17.5	F07
	3	17	24	55	90	70	36	84	65.5	283	98	M8	⁵ /16-18 UNC	2	21.5	27.5	F07
300	4	17	24	55	90	70	36	99	65.5	305	100	M8	5/16-18 UNC	2	20.5	39.5	F07
	6	23	35	85	150	125	43.5	136.5	66.5	403	138	M12	¹ /2-13 UNC	2	23.5	33	F12
	8	27	40	100	175	140	50	166	76.5	419	158	M16	5/8-11 UNC	2	26	43	F14
	10	32	48	130	210	165	58.5	202	90.5	457	189	M20	³ /4-10 UNC	2	33.5	28	F16

KITZ product codes: 150SCTA 150UTAM 300SCTA 300UTAM ★UNC threads optionally available.

Construction and Materials Standard Super-firesafe ■Standard material configuration can be applied to sour service. No. Parts 150SCTB 150SCTB-FS 300SCTB-FS 300SCTB 1 Body A216 Gr. WCB* A216 Gr. WCB* 2 Body cap 3 A276 Type 304*2 Stem 4 Ball A276 Type 304 / A351 Gr. CF8*2 A351 Gr. CF8 7 Gland 8 Gland packing PTFE Flexible graphite Handle*3 9 Ductile iron Aluminum 16A Nameplate Carbon steel Washer 16B 36 PTFE 19 Gasket Flexible graphite 20 Packing washer A276 Type 316 30 Ball seat **HYPATITE® PTFE** A194 Gr. 2H 33 Cap nut A193 Gr. B7 35 Cap bolt 48 Cr-Mo steel 36 Gland bolt 1¹/2"~10' Reinforced PTFE Thrust washer 47 Carbon steel 48 Snap ring 16B 49 Stopper A276 Type 304 16A Reinforced PTFE 67 Stem bearing Handle bolt Carbon steel 123 $2^{1/2}$ ~ 10^{\prime} A313 & A276 Type 316 124A Spring & pin 20 1/2"~2" A313 Type 316 124B Spring *1 A352 low-temperature service materials are optionally available. *2 CF8M or Type 316 is optionally available for balls & stems. *3 Bar type handle is used for 6" and 8". Worm gear operators are used for 10". 124B All part numbers are corresponding with those shown in valve assembly drawings. 124A 19 30 30 35 Illustration shows Size 4 design.

Construction and Materials Standard ■Standard material configuration can be Super-firesafe 150UTBM 300UTBM applied to sour service. No. Parts 150UTB 150UTB-FS/UTBM-FS 300UTB-FS/UTBM-FS 300UTB 1 Body A351 Gr. CF8* A351 Gr. CF8M*1 A351 Gr. CF8/CF8M*1 A351 Gr. CF8*1 A351 Gr. CF8M* A351 Gr. CF8/CF8M*1 2 Body cap A276 Type 304*1 A276 Type 316*1 A276 Type 304/316*1 3 Stem A276 Type 304 or A351 Gr. CF8*1 A276 Type 304/316 or A351 Gr. CF8/CF8M*1 A276 Type 316 or A351 Gr. CF8M*1 4 Ball A351 Gr. CF8 7 Gland PTFE Flexible graphite 8 Gland packing 9 Handle*4 Ductile iron Aluminum 16A Nameplate Carbon steel Washer 16B PTFE Gasket Flexible graphite 19 A276 Type 316 Packing washer*2 20 36 Ball seat HYPATITE® PTFE*3 30 A194 Gr. 8 33 Cap nut A193 Gr. B8 35 Cap bolt A193 Gr. B8 36 Gland bolt Reinforced PTFE 47 Thrust washer 48 A276 Type 304 48 Snap ring 49 A276 Type 304 Stopper Reinforced PTFE 67 Stem bearing 16B 6"~10" 16A Handle bolt Carbon steel 123 21/2"~10" A313 & A276 Type 316 124A Spring & pin $1/2'' \sim 2''$ A313 Type 316 124B Spring 20 *1 Other stainless steels are available as options. *2 Packing washers are used only for 1"and smaller. *3 Virgin PTFE for 10"Class 150. *4 Bar type handles are used for 6" and 8". Worm gear operations are used for 10". All part numbers are corresponding with those shown in valve assembly drawings. 124B 124A 19 30 Illustration shows Size 4 design.

Construction and Materials Standard ■Standard material configuration can be Super-firesafe applied to sour service. No. Parts 150UTA 150UTAM 150UTA-FS/UTAM-FS 300UTA-FS/UTAM-FS **300UTA** 300UTAM 1 Body A351 Gr. CF8 A351 Gr. CF8M A351 Gr. CF8/CF8M A276 Type 304* A276 Type 304/316*1,2 3 Stem A276 Type 316*2 A276 Type 304 A276 Type 316 A276 Type 304/316 Ball A351 Gr. CF8 A351 Gr. CF8M A351 Gr. CF8/CF8M 1/2"~1" A276 Type 316 A276 Type 304*3 $1^{1/2}$ ~ $4^{"}$ 7 Gland A351 Gr. CF8 6"~ 10" 123 PTFE 8 Gland packing Flexible graphite 1/2"~1" Stainless steel Handle*4 9 11/2"~4" Ductile iron Handle nut Stainless steel 10 Nameplate Stainless steel 16 19A Gasket **PTFE** 19B Secondary gasket Flexible graphite 48 20 Packing washer 11/2" only A276 Type 316 49 1/2"~2"·8"·10" A351 Gr. CF8 A351 Gr. CF8M A351 Gr. CF8/CF8M 29 Insert 3"~6" A182 Gr. F304 A182 Gr. F316 A182 Gr. F304/F316 40A Ball seat **HYPATITE® PTFE** 30 34 1/2"~4" 34 Gland nut Stainless steel 6"~10" A193 Gr. B8M Gland bolt 36 $1/2'' \sim 4''$ 40A Lock plate Stainless steel 43 1/2"~4" 40B Key lock plate Stainless steel Coned disc spring $^{1/2}$ " \sim 4" 43 Stainless steel 47 Thrust washer Reinforced PTFE 8 48 Snap ring $1^{1/2}$ ~ $10^{"}$ Stainless steel 20 1¹/2"~10' Stainless steel 49 Stopper $1^{1/2}$ ~ $10^{"}$ Reinforced PTFE 67 Stem bearing 123 Handle bolt Carbon steel Stainless steel 124 Spring & pin Stopper pin Stainless steel Spring washer 11/2"~10" 145 Stainless steel *1 A479 / A479M Type 304 for 3"and lager. *2 A479 / A479M Type 316 for 3"and lager *3 A479 / A479M Type 304 for 3"and 4" *4 Bar type handles are used for 6" and larger 40B All part numbers are corresponding with those shown in valve 126 assembly drawings. 19B 145 16 19A 30 Illustration shows Size 4 design.

Construction and Materials ■An optional material configuration is Standard Super-firesafe available for sour service. No. Parts 600SCTB 600SCTBS 1 Body A105*1 2 Body cap 3 Stem A276 Type 304*2 4 Ball A351 Gr. CF8 7 Gland 8 Gland packing PTFE Flexible graphite 9 Handle Ductile iron Stainless steel 16 Nameplate Flexible graphite Gasket*3 19 spiral wound 1/2"~1" Packing washer A276 Type 316 20 30 Ball seat Reinforced PTFE with MoS₂ 33 Cap nut A194 Gr. 2H A193 Gr. B7 35 Cap bolt Gland bolt Cr-Mo steel 36 NBR 48 45A O-ring O-ring NBR 45B Thrust washer Metal-backed PTFE 47 48 Snap ring Carbon steel A276 Type 304 49 Stopper Reinforced PTFE Stem bearing 67 A313 & A276 Type 316 124 Spring & pin 36 A167 Type 304 143 Seat spring A105 Zn plating 150 Seat retainer 155 Spacer*3 **PTFE** 47 175 Retainer gland*3 A105 3 Retainer packing*3 Flexible graphite 176 *1 A350 low-temperature service materials are optionally available. *2 CF8M or Type 316 and other stainless steels are optionally available 35 124 *3 These parts are used only for super-firesafe provision. All part numbers are corresponding with those shown in valve assembly drawings. 33 19 (or 45A) 143 175 155 Illustration shows Size 4 design.

Construction and Materials

NI-	Doub	Stan	dard	Super-firesafe
No.	Parts	600UTB	600UTBM	600UTBS/UTBMS
1	Body	A351 Gr. CF8*2	A351 Gr. CF8M*2	A351 Gr. CF8/CF8M*2
2	Body Cap	7,001 Gr. 010	7,001 GI. 01 0W	7.001 01.01 0/01 0/01
3	Stem	A276 Type 304*2	A276 Type 316*2	A276 Type 304/316*2
4	Ball	7.270 Type 004	71270 Type 010	7/2701ypc004/010
7	Gland		A351 Gr. CF8	
8	Gland packing	PT	FE	Flexible graphite
9	Handle		Ductile iron	
16	Nameplate		Stainless steel	
19	Gasket*1	-	_	Flexible graphite spiral wound
20	Packing washer 1/2"~1"		A276 Type 316	
30	Ball seat	Rei	nforced PTFE with M	loS2
33	Cap nut		A194 Gr. 8	
35	Cap bolt		A193 Gr. B8	
36	Gland bolt		A193 Gr. B8	
45A	O-ring	FF	PM	_
45B	O-ring		FPM	
47	Thrust washer		Metal-backed PTFE	
48	Snap ring		A276 Type 304	
49	Stopper		A276 Type 304	
67	Stem bearing		Reinforced PTFE	
124	Spring & pin	A	313 & A276 Type 31	
143	Seat spring	A167 Type 304	INCONEL X-750	A167 Type 304/ INCONEL X-750
150	Seat retainer	A276 Type 304	A276 Type 316	A276 Type 304/316
155	Spacer*1	_	_	PTFE
175	Retainer gland*1	_	_	A276 Type 304
176	Retainer packing*1	_	_	Flexible graphite
AA TUU				

■Standard material configuration can be applied to sour service.

All part numbers are corresponding with those shown in valve assembly drawings.

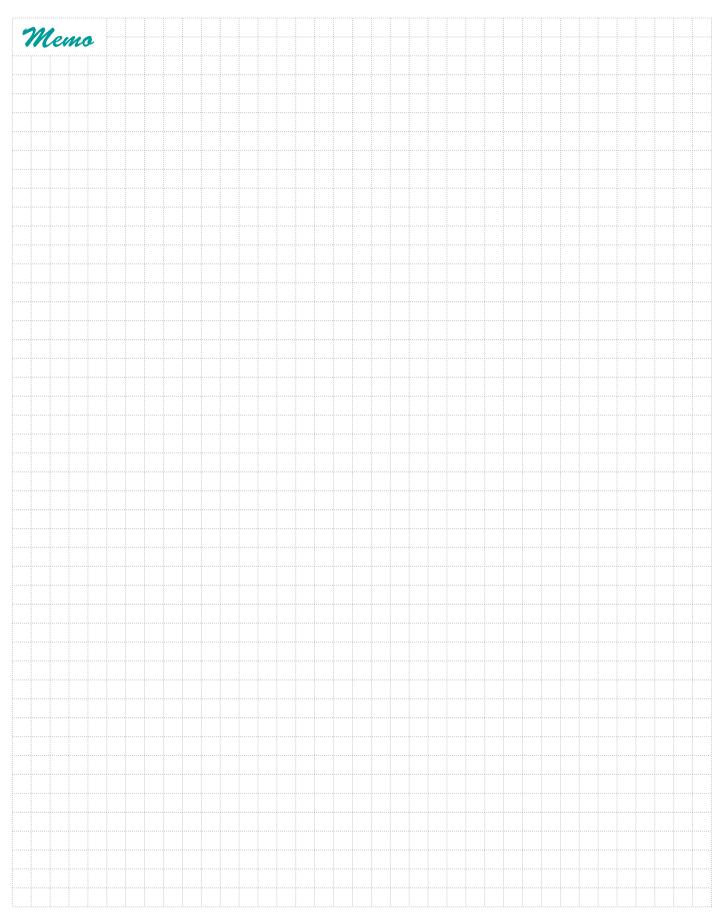
Refer to the illustration on Page 42.

^{*1} This parts are used only for super-firesafe provision. *2 Other stainless steel are optionally available.

Construction and Materials ■An optional material configuration is Standard Super-firesafe available for sour service. No. Parts 1500SCTB 1500SCTBS 1 Body A216 Gr. WCB*1 2 Body cap 3 Stem A276 Type 304*2 4 Ball A351 Gr. CF8 7 Gland 8 Gland packing PTFE Flexible graphite 9 Handle Flexible graphite Gasket*3 19 spiral wound Nylon with MoS₂ Ball seat 30 Stem washer A276 Type 316 31 33 Cap nut A194 Gr. 2H 35 Cap bolt A193 Gr. B7 Gland bolt Cr-Mo steel 36 NBR 45A O-ring NBR 45B O-ring Metal-backed PTFE Thrust washer 47 19 (or 45A) Snap ring Carbon steel 48 143 49 A276 Type 304 Stopper 175 Reinforced PTFE 67 Stem bearing A576 Gr. 1025 Zn plating 85 A313 & A276 Type 316 124 Spring & pin A167 Type 304 Seat spring 143 PTFE 146 Back-up ring Seat retainer A105 Zn plating 155 Spacer*3 **PTFE** 155 176 Retainer gland*3 A105 175 146 45B 176 Retainer packing*3 Flexible graphite 150 *1 A352 low-temperature service materials are optionally available 30 *2 CF8M or Type 316 is optionally available for ball & stem. *3 These parts are used only for super-firesafe provision. All part numbers are corresponding with those shown in valve assembly drawings. 33 35 67 47 31 3

Construction and Materials

No.	Dorto	Stan	dard	Super-firesafe
NO.	Parts	1500UTB	1500UTBM	1500UTBS/UTBMS
1	Body	A351 Gr. CF8*2	A351 Gr. CF8M*2	A351 Gr. CF8/CF8M*2
2	Body Cap	A331 GI. CI 8	ASST GI. CI SIVI	A331 GI. CI O/CI OIVI
3	Stem	A276 Type 304*2	A276 Type 316*2	A276 Type 304/316*2
4	Ball	7270 Type 304	A270 Type 310	A270 Type 30-4/310
7	Gland		A351 Gr. CF8	
8	Gland packing	PT	FE	Flexible graphite
9	Handle		Ductile iron	
19	Gasket*1	-	_	Flexible graphite spiral wound
30	Ball seat		Nylon with MoS ₂	
31	Stem washer		A276 Type 316	
33	Cap nut		A194 Gr. 8	
35	Cap bolt		A193 Gr. B8	
36	Grand bolt		A193 Gr. B8	
45A	O-ring	FF	PM	_
45B	O-ring		FPM	
47	Thrust washer		Metal-backed PTFE	
48	Snap ring		A276 Type 304	
49	Stopper		A276 Type 304	
67	Stem bearing		Reinforced PTFE	
85	Plug		A276 Type 316	
124	Spring & pin	Α	A313 & A276 Type 31	
143	Seat spring	A167 Type 304	INCONEL X-750	A167 Type 304/ INCONEL X-750
146	Back-up ring		PTFE	
150	Seat retainer	A276 Type 304	A276 Type 316	PTFE 304/316
155	Spacer*1	_	_	PTFE
175	Retainer gland*1	_	_	A276 Type 304/316
176	Retainer packing*1	_	_	Flexible graphite


■Standard material configuration can be applied to sour service.

All part numbers are corresponding with those shown in valve assembly drawings.

Refer to the illustration on Page 44.

^{*1} These parts are used only for super-firesafe provision.

^{*2} Other stainless steel are optionally available.

- Technical Features of KITZ HYPATITE® PTFE and SWELLESS® Ball Seats
- Fire Test Standards
- General Precautions
- **Flow Characteristics**
- Steel Pipe Flanges

Technical Features of KITZ HYPATITE® PTFE and SWELLESS® Ball Seats

KITZ HYPATITE® PTFE ball seats are made of denatured PTFE, a molecularly reinforced PTFE/PFA copolymer, and specifically engineered for high sealing performance and prolonged service life of valves, in place of conventional glass-filled PTFE seats. The unique performance features are compared with those of conventional glass-filled or virgin PTFE ball seats below. With the introduction of HYPATITE® PTFE ball seats, glass-filled PTFE version is not anymore available from KITZ Corporation, while carbon-filled or virgin PTFE seats remain available for special orders.

As a newly developed option, KITZ **SWELLESS®** ball seats principally made of PFA are recommended specifically for monomer service. This epoch-making new seat maximizes resistance to the permeation of monomer into its molecular structure (generally known as a "swelling" problem) which causes seat deformation and seriously affects shut-off function of valves in styrene and butadiene monomer service.

Our HYPATITE® PTFE ball seats also outperform conventional PTFE seats with its monomer resistance feature. However, it has been verified both by laboratory and on-site tests that SWELLESS® seats perform much better than HYPATITE® PTFE seats, as they indeed deserve the name of "SWELLESS", their registered tradename Besides, PFA resin, the principal material, assures the known features of florine resin such as excellent resistance characteristics to high or low temperatures, creep or compression, abrasion and general chemicals.

Table 1 and Figure 1, 2 and 3 here explain these technical features of **HYPATITE® PTFE** and **SWELLESS®** ball seats compared with conventional seat materials.

Table 1. Compared Technical Features of KITZ Ball Seats

Compared features	HYPATITE® PTFE or SWELLESS® seats	PTFE seats	Glass-filled PTFE seats
Heat resistance	Good	_	Good
Sealing performance	Good	Good	Good
Durability (Pitting-proof)	Good	_	Fair
Creep and compress in resistance	Good	_	Fair
Chemical resistance *	Good	Good	_
Abrasion resistance	Good	Good	Good
Firesafe provision	Good	Good	_
Throttling service	Fair	Fair	Fair
Product contamination	None	None	_
Valve operating torque	Low	Low	Low

 $^{* \ \, \}text{Refer to the above body text for monomer service characteristics of } \ \, \textbf{SWELLESS}^{\texttt{@}} \ \, \text{seats}.$

Fig. 1 KITZ Ball Valve Seats
Compared Lab Test Results
against Gaseous Butadiene Monomer vs. Styrene Monomer

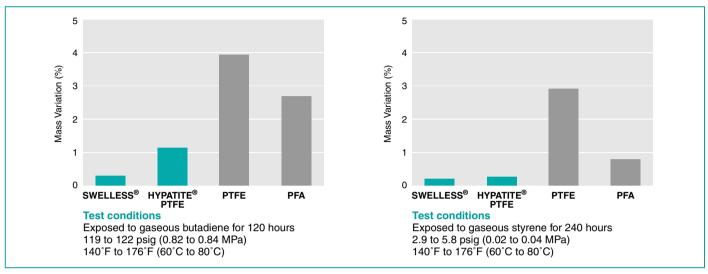


Fig. 2 KITZ Ball Valve Seats

Compared Results of Mechanical Load Tests I

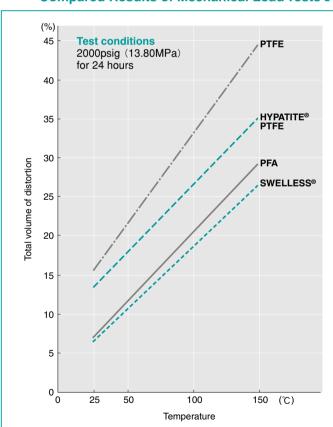
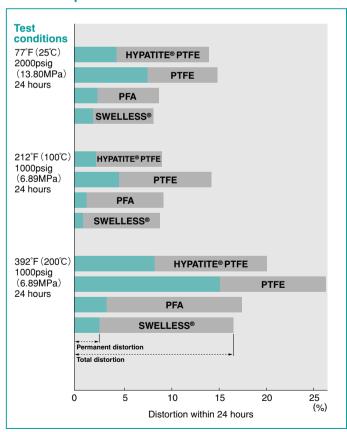



Fig. 3 KITZ Ball Valve Seats
Compared Results of Mechanical Load Tests II

These data show results of some of the tests carried out at our laboratory under the specific test conditions introduced here. Variation in the kind of test madia, the phase of test media (gaseous or liquid), preparation of test specimen and test conditions such as pressure, temperature and duration, may cause the test results quantitatively different from these data, but general monomer resistance levels of the seats introduced here are comparatively as exhibited in these test data.

Fire Test Standards

January 1, 2003

1. Introduction

Plant fires have become an increasingly serious concern due to the installation of a greater number of soft-seated ball and butterfly valves in place of conventional metal-seated gate and globe valves at many refineries and petrochemical plants. Extremely high temperatures usually result in decomposition or deterioration of resilient or non-metallic sealing components such as gland packing rings, O-rings and gaskets, causing leakage of line fluid which, in turn, increases the magnitude of plant fires.

To minimize the extent of damage in such a mishap, soft-seated valves are expected to have the provision for secondary metal-to-metal sealing functions to minimize external and internal (through-the-bore) leakages as well as the provision for undisturbed valve operation during or after the fire enabling emergency shut-off or release of line fluid.

Soft-seated valves may be manufactured to meet such critical fire safety requirements, if designed adequately, machined and assembled correctly, and equipped with proper sealing components.

Valves designed and manufactured in such a way may be called "firesafe valves". Manufacturers' claims of fire safety, however, remain subjective.

To verify the firesafe performance capability, the valve should be subjected to simulated plant fire conditions. API and BSI have developed technical specifications for such destructive tests, which are generally known as fire test standard. Fire test are destructive and cost a lot to carry out due to high test expenses and bills for a third party's certification, let alone the cost of destroyed samples. Such high costs eventually prohibit repetition of fire test. To minimize the frequency of fire tests, all existing fire test standards allow a certain range of sizes and pressure classes be qualified and certified without actual test being carried out, given that valves are designed the same and their non-metallic sealing materials are considered same as the actually tested valves.

2. History

BS 6755, Part 2, 1987 (*1) was issued to introduce, in a different form of presentation, the technical contents of API 6FA, 1985 (*2) and API 607, 1985 (*3), with an intention of replacing the requirements of BS 5146, Part 1, 1974, Appendix A.1 (*4). Until this new British Standards was issued, technical discrepancies existing between British Standards and API Standards had unnecessarily incurred high costs to valve manufacturers who desired to get their products qualified and certified to these standards, and caused confusion to contractors and end-users for evaluation of the products to be purchased.

Even within the United States, valve manufacturers, contractors and end-users used to have similar kinds of difficulties caused by discrepant fire test requirements which had long existed between API Production Department (which is now responsible for API 6FA) and API Refining Department (which has been responsible for API 607).

Following the virtual unification of fire test requirements made by API Production and Refining Departments in their latest 1985 issues. BSI finally launched a major program to adopt American Standards as their own, which shall eventually help realize a globally unfied fire test standard through ISO.

^{*1 &}quot;Testing of valves: Specification for fire type-testing requirements".

^{*2 &}quot;Specification for fire test for valves". (2nd edition was issued in 1994)

^{*3 &}quot;Fire test for soft-seated quarter-turn valves". (4th edition issued in 1993 has nullified the qualification made according to this 3rd edition, as of May 1, 1996.)

^{*4 &}quot;Inspection and test of valves: Specification for steel valves for the petroleum, petrochemical and allied industries: Fire safe testing of soft seated ball valves".

3. Objective of Standardization

As high-lighted by all of these standards, the fire test standard is prepared to establish test requirements which cover test procedures, performance requirements or evaluation criteria, product qualification and test certification, for the objective of technical evaluation of pressure-containing capability of valves exposed to pre-determined, simulated fire conditions.

Here, the performance requirements are intended to establish limits of acceptability of valves regardless of size, nominal pressure or class rating. The burn period, or test duration, is decided on the basis that it represents the maximum time required to extinguish most plant fires. Fires of longer duration than specified in the standards shall be, therefore, considered to be of a major magnitude with consequences, or damage, greater than those anticipated in the fire tests.

For this reason, requirements for more or less stringent testing may be negotiated and established by the valve manufacturer and his customer to meet the customer's specific service applications. In fact, API 607 was subjected to a major revision in its 4th Edition issued in 1993 for more realistic test requirements.

4. Evaluation of Test Results

The maximum allowable leakage rates in these standards are determined for the defined test temperature, pressure and duration. Here it is noted that leakages under other test conditions may be substantially different. Fire test standards are prepared for just a prototype test of the valve with a size and class rating selected by the manufacturer under pre-determined test conditions assumably representing typical plant fire conditions. This can be translated to mean that test reports certified to any of these fire test standards do not necessarily verify satisfactory performance of the valves that users may purchase from the manufacturer at any given time. As already mentioned, fire test is a kind of destructive test (unlike the pressure test conducted for normal valve shipments), and no one would be willing to purchase such destructively tested valves in a commercial transaction.

It was expressively mentioned by BS 5146, 1974, Appendix A.1 that the "test is intended only as a prototype test and is intended to cover a range of sizes of valves having the same pressure rating, design details and material composition". A test report prepared by BSI for the fire test conducted on KITZ ball valves mentioned that the "report only relates to the actual ball valves which were tested and assessed. The results obtained therefore do not necessarily relate to samples from the production line and in no way imply the performance or quality of the continuing production".

The range of sizes and pressure classes to be automatically qualified by a prototype test of a valve of a certain size and rating is introduced here.

Also it should be noted that potential leakage from pipe-to-valve end-connection joint (either flanged, threaded or welded) cannot be evaluated by these standards, and not included in the allowable external leakages specified. API Production Department issued a standard API Bulletin 6F1 (*5), for performance evaluation of such valve end connections exposed to the fire.

Fire Test Valve Qualification (API 607-1993)

Size	qualification	Pressure r	ating qualification
Size of test valve (NPS)	Valve sizes qualified (NPS)	Rating of test valve (Class)	Valve sizes qualified (Class)
1/2	³ /4 and smaller	150	150, 300
1	³ /4 , 1 , 1 ¹ /4 , 1 ¹ /2	300	300, 400, 600
2	11/2,2,21/2,3	400	400, 600, 800
4	3,4,5,6	600	600, 800, 900
8	6 and larger	800	800, 900, 1500
		1500	1500, 2500

^{*5} Bulletin on Performance of API and ANSI End Connections in a Fire Test According to API Specification 6FA, 2nd Edition, Feb. 15, 1994

General Precautions for Trouble-free Operation of Soft-seated Ball Valves

1. Excessive Cavity Pressure

Refer to Page 13. Very important

2. High-Temperature and High-Pressure Service

The pressure-temperature ratings published by manufacturers are usually considered an appropriate guide to the maximum temperature and pressure that such ball valves may withstand. KITZ recommends, however, reference to the valve distributor or manufacturer for an assurance of suitability when ball valves are to be subjected to the following conditions:

- a: *Floating ball valves* are left closed for a long period of time under high temperature or high differential pressure.
- b: *Floating ball valves* are operated frequently for long period of time under high temperature or high differential pressure.
- c: *Floating ball valves* are subjected to frequent change of the line pressure or service temperature.

3. Liquids with High Velocity

When ball valves must be operated frequently on liquids with very high velocity, a check should be made with the valve distributor or manufacturer for appropriate advice to minimize the possibility of seat deformation, especially when they are highly pressurized on high-temperature lines.

4. Valve Selection

Be sure to select a valve with design specifications which meet the pressure and temperature conditions required. Take special care to select the valve to be used for the fluid containing abrasives, since the high molecular materials employed in the seats could suffer degradation.

5. Valve Mounting

Before mounting the valve, the pipe bore should be checked to confirm that no weld spatter, scale or rust particles remain inside. For mounting flanged valves, diagonally located flange bolts should be tightened evenly.

6. Degree of Valve Opening

Ball valves should basically be considered as ON/OFF valves only and care should be taken to ensure that they are fully closed or open. Opening ball valves partially will result in seat erosion and cause seat leakage. Pipelines that require the use of ball valves for throttling service should be designed in consideration of the amount of the seat leakage which may occur in its fully closed position. Note that ball valves should be stored in a fully open position.

7. Valve Actuation

Three types of pneumatic valve actuator (KITZ B-Series, F-Series, DAT-Series) are available for our factory mounting. Also KITZ "KELMO" electric actuators are available. Electric actuators or pneumatic actuators of any other specified brands are also available for our factory mounting.

In case of user's mounting their own actuators on KITZ ball valves, however, all users are recommended to contact KITZ or its authorized distributors for adequate technical advice, because any improper sizing of actuators may cause serious problems in the field. It must be carefully noted that the actual value of the operating torque of any given valve may vary, depending on the service conditions listed below:

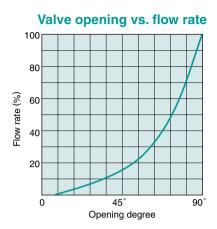
(1) Fluid

- a. Kind of fluid
- b. Line pressure
- c. Line temperature
- d. Fluid volume
- (2) Ambient temperature
- (3) Opening/closing degree
- (4) Type of actuator
- (5) Frequency and pattern of change of line pressure
- (6) Frequency and pattern of change of line and ambient temperatures

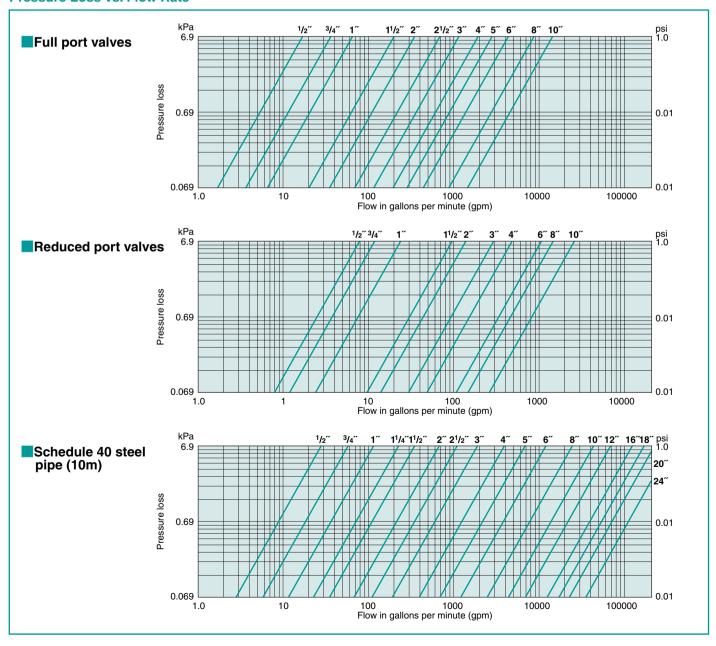
8. Valve Disassembly

The line fiuid should be completely removed from the internal of the valves before they are dismantled from the pipeline for maintenance.

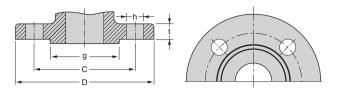
Even after the line fluid has been discharged through the pipeline, some fluid is always trapped inside the body and body cavity (the room surrounded by the body, ball and two seats).


Be sure to completely discharge the pressure trapped in the body cavity, before valve disassembly.

Inspection and Warranty


Each KITZ ball valve is subjected to 100% in-house inspection designated by API 598 or BS 6755 Part 1. This includes hydrostatic shall tests and pneumatic low-pressure seat test. Manufacturer's material certificates and test reports are available upon request. Each KITZ ball valve is guaranteed for 12 months after placement in service, but not exceeding 18 months after shipment from KITZ factories.

Flow Characteristics


One of the best advantages of ball valves is that every flow per any given bore size is larger than other types of valves. Fluid is much less disturbed by eddy currents or pulsation. To obtain the figure of flow per valve opening, simply multiply the flow rate (%) given here by the corresponding value given in the table of Pressure Loss vs. Flow Rate.

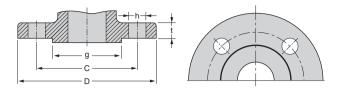
Pressure Loss vs. Flow Rate

Steel Pipe Flanges

ASME B16.5-1996 Class 150 RF, Class 300 RF

Class 150 steel pipe flange dimensions

Nomin	al Size	Г)	(C		9		t	h (Bol	t hole)	Во	olt
inch	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	Number	Diam.
1/2	15	3.50	89	2.38	60.5	1.38	35	0.44	11.2	0.62	16	4	1/2
3/4	20	3.88	98	2.75	70.0	1.69	43	0.50(0.44)	12.7(11.2)	0.62	16	4	1/2
1	25	4.25	108	3.12	79.5	2.00	51	0.56(0.44)	14.3(11.2)	0.62	16	4	1/2
1 ¹ /4	32	4.62	117	3.50	89.0	2.50	64	0.62(0.50)	15.9(12.7)	0.62	16	4	1/2
11/2	40	5.00	127	3.88	98.5	2.88	73	0.69(0.56)	17.5(14.3)	0.62	16	4	1/2
2	50	6.00	152	4.75	120.5	3.62	92	0.75(0.62)	19.1(15.9)	0.75	19	4	5/8
21/2	65	7.00	178	5.50	139.5	4.12	105	0.88(0.69)	22.3(17.5)	0.75	19	4	5/8
3	80	7.50	190	6.00	152.5	5.00	127	0.94(0.75)	23.9(19.1)	0.75	19	4	5/8
4	100	9.00	229	7.50	190.5	6.19	157	0.94	23.9	0.75	19	8	5/8
5	125	10.00	254	8.50	216.5	7.31	186	0.94	23.9	0.88	22	8	3/4
6	150	11.00	279	9.50	241.5	8.50	216	1.00	25.4	0.88	22	8	3/4
8	200	13.50	343	11.75	298.5	10.62	270	1.12	28.6	0.88	22	8	3/4
10	250	16.00	406	14.25	362.0	12.75	324	1.19	30.2	1.00	25	12	7/8
12	300	19.00	483	17.00	432.0	15.00	381	1.25	31.8	1.00	25	12	7/8
14	350	21.00	533	18.75	476.5	16.25	413	1.38	35.0	1.12	29	12	1
16	400	23.50	597	21.25	539.5	18.50	470	1.44	36.6	1.12	29	16	1
18	450	25.00	635	22.75	578.0	21.00	533	1.56	39.7	1.25	32	16	1 ¹ /8
20	500	27.50	698	25.00	635.0	23.00	584	1.69	42.9	1.25	32	20	1 ¹ /8
24	600	32.00	813	29.50	749.5	27.25	692	1.88	47.7	1.38	35	20	11/4

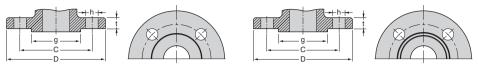

Height of raised face is 0.06 inch (1.6 mm) each. Dimensions in ($\,$) are for valve flanges.

Class 300 steel pipe flange dimensions

Nomin	al Size	Г)	(C		g	t	t	h (Bol	t hole)	Во	olt
inch	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	Number	Diam.
1/2	15	3.75	95	2.62	66.5	1.38	35	0.56	14.3	0.62	16	4	1/2
3/4	20	4.62	117	3.25	82.5	1.69	43	0.62	15.9	0.75	19	4	5/8
1	25	4.88	124	3.50	89.0	2.00	51	0.69	17.5	0.75	19	4	5/8
1 ¹ /4	32	5.25	133	3.88	98.5	2.50	64	0.75	19.1	0.75	19	4	5/8
1 ¹ /2	40	6.12	156	4.50	114.5	2.88	73	0.81	20.7	0.88	22	4	3/4
2	50	6.50	165	5.00	127.0	3.62	92	0.88	22.3	0.75	19	8	5/8
21/2	65	7.50	190	5.88	149.0	4.12	105	1.00	25.4	0.88	22	8	3/4
3	80	8.25	210	6.62	168.0	5.00	127	1.12	28.6	0.88	22	8	3/4
4	100	10.00	254	7.88	200.0	6.19	157	1.25	31.8	0.88	22	8	3/4
5	125	11.00	279	9.25	235.0	7.31	186	1.38	35.0	0.88	22	8	3/4
6	150	12.50	318	10.62	270.0	8.50	216	1.44	36.6	0.88	22	12	3/4
8	200	15.00	381	13.00	330.0	10.62	270	1.62	41.3	1.00	25	12	7/8
10	250	17.50	444	15.25	387.5	12.75	324	1.88	47.7	1.12	29	16	1
12	300	20.50	521	17.75	451.0	15.00	381	2.00	50.8	1.25	32	16	1 ¹ /8
14	350	23.00	584	20.25	514.5	16.25	413	2.12	54.0	1.25	32	20	1 ¹ /8
16	400	25.50	648	22.50	571.5	18.50	470	2.25	57.2	1.38	35	20	1 ¹ /4
18	450	28.00	711	24.75	628.5	21.00	533	2.38	60.4	1.38	35	24	1 ¹ /4
20	500	30.50	775	27.00	686.0	23.00	584	2.50	63.5	1.38	35	24	1 ¹ /4
24	600	36.00	914	32.00	813.0	27.25	692	2.75	69.9	1.62	41	24	1 ¹ /2

Height of raised face is 0.06 inch (1.6 mm) each.

Steel Pipe Flanges


Class 600 RF

Class 600 steel pipe flange dimensions

Nomin	al Size)	(0	į į	9		t	h (Bol	t hole)	Во	olt
inch	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	Number	Diam.
1/2	15	3.75	95	2.62	66.5	1.38	35	0.56	14.3	0.62	16	4	1/2
3/4	20	4.62	117	3.25	82.5	1.69	43	0.62	15.9	0.75	19	4	5/8
1	25	4.88	124	3.50	89.0	2.00	51	0.69	17.5	0.75	19	4	5/8
1 ¹ /4	32	5.25	133	3.88	98.5	2.50	64	0.81	20.7	0.75	19	4	5/8
1 ¹ /2	40	6.12	156	4.50	114.5	2.88	73	0.88	22.3	0.88	22	4	3/4
2	50	6.50	165	5.00	127.0	3.62	92	1.00	25.4	0.75	19	8	5/8
21/2	65	7.50	190	5.88	149.0	4.12	105	1.12	28.6	0.88	22	8	3/4
3	80	8.25	210	6.62	168.0	5.00	127	1.25	31.8	0.88	22	8	3/4
4	100	10.75	273	8.50	216.0	6.19	157	1.50	38.1	1.00	25	8	7/8
5	125	13.00	330	10.50	266.5	7.31	186	1.75	44.5	1.12	29	8	1
6	150	14.00	356	11.50	292.0	8.50	216	1.88	47.7	1.12	29	12	1
8	200	16.50	419	13.75	349.0	10.62	270	2.19	55.6	1.25	32	12	1 ¹ /8
10	250	20.00	508	17.00	432.0	12.75	324	2.50	63.5	1.38	35	16	1 1/4
12	300	22.00	559	19.25	489.0	15.00	381	2.62	66.7	1.38	35	20	1 1/4
14	350	23.75	603	20.75	527.0	16.25	413	2.75	69.9	1.50	38	20	13/8
16	400	27.00	686	23.75	603.0	18.50	470	3.00	76.2	1.62	41	20	11/2
18	450	29.25	743	25.75	654.0	21.00	533	3.25	82.6	1.75	45	20	15/8
20	500	32.00	813	28.50	724.0	23.00	584	3.50	88.9	1.75	45	24	15/8
24	600	37.00	940	33.00	838.0	27.25	692	4.00	101.6	2.00	51	24	17/8

Height of raised face is 0.25 inch (6.4 mm) each.

Steel Pipe Flanges

Class 600 to 1500

Class 150, 300

Class 1500 RF

Class 1500 steel pipe flange dimensions

Nomin	al Size)	(ç)	1	t	h (Bol	t hole)	Вс	olt
inch	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	Number	Diam.
1/2	15	4.75	121	3.25	82.5	1.38	35	0.88	22.4	0.88	22	4	3/4
3/4	20	5.12	130	3.50	89.0	1.69	43	1.00	25.4	0.88	22	4	3/4
1	25	5.88	149	4.00	101.5	2.00	51	1.12	28.5	1.00	25	4	7/8
1 ¹ /4	32	6.25	159	4.38	111.0	2.50	64	1.12	28.5	1.00	25	4	7/8
1 ¹ /2	40	7.00	178	4.88	124.0	2.88	73	1.25	31.8	1.12	29	4	1
2	50	8.50	216	6.50	165.0	3.62	92	1.50	38.1	1.00	25	8	7/8
21/2	65	9.62	244	7.50	190.5	4.12	105	1.62	41.2	1.12	29	8	1
3	80	10.50	267	8.00	203.0	5.00	127	1.88	47.8	1.25	32	8	1 ¹ /8
4	100	12.25	311	9.50	241.5	6.19	157	2.12	53.9	1.38	35	8	1 ¹ /4
5	125	14.75	375	11.50	292.0	7.31	186	2.88	73.2	1.62	41	8	1 ¹ /2
6	150	15.50	394	12.50	317.5	8.50	216	3.25	82.6	1.50	38	12	1 ³ /8
8	200	19.00	483	15.50	393.5	10.62	270	3.62	92.0	1.75	45	12	1 ⁵ /8
10	250	23.00	584	19.00	482.5	12.75	324	4.25	108.0	2.00	51	12	1 ⁷ /8
12	300	26.50	673	22.50	571.5	15.00	381	4.88	124.0	2.12	54	16	2
14	350	29.50	749	25.00	635.0	16.25	413	5.25	133.4	2.38	60	16	2 ¹ /4
16	400	32.50	826	27.75	705.0	18.50	470	5.75	146.1	2.62	67	16	21/2
18	450	36.00	914	30.50	774.5	21.00	533	6.38	162.1	2.88	73	16	2 ³ /4
20	500	38.75	984	32.75	832.0	23.00	584	7.00	177.8	3.12	79	16	3
24	600	46.00	1168	39.00	990.5	27.25	692	8.00	203.2	3.62	92	16	31/2

Height of raised face is 0.25 inch (6.4 mm) each.

ASME B16.47-1996 (Series A)

Class 150 steel pipe flange dimensions

Nomin	al Size)	(<u> </u>	ć	9		t	h (Bol	t hole)	Во	olt
inch	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	Number	Diam.
26	650	34.25	870	31.75	806.5	29.50	749	2.69	68.4	1.38	35	24	1 ¹ /4
28	700	36.50	927	34.00	863.5	31.50	800	2.81	71.4	1.38	35	28	1 ¹ /4
30	750	38.75	984	36.00	914.5	33.75	857	2.94	74.7	1.38	35	28	1 ¹ /4
32	800	41.75	1060	38.50	978.0	36.00	914	3.18	80.8	1.62	41	28	1 ¹ /2
34	850	43.75	1111	40.50	1029.0	38.00	965	3.25	82.6	1.62	41	32	1 ¹ /2
36	900	46.00	1168	42.75	1086.0	40.25	1022	3.56	90.5	1.62	41	32	1 ¹ /2

Height of raised face is 0.06 inch (1.6 mm) each.

Class 300 steel pipe flange dimensions

Nominal Size		D		С		g		t		h (Bolt hole)		Bolt	
inch	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	Number	Diam.
26	650	38.25	972	34.50	876.5	29.50	749	3.12	79.3	1.75	45	28	1 ⁵ /8
28	700	40.75	1035	37.00	940.0	31.50	800	3.38	85.9	1.75	45	28	1 ⁵ /8
30	750	43.00	1092	39.25	997.0	33.75	857	3.62	92.0	1.88	48	28	1 ³ /4
32	800	45.25	1149	41.50	1054.0	36.00	914	3.88	98.6	2.00	51	28	1 ⁷ /8
34	850	47.50	1207	43.50	1105.0	38.00	965	4.00	101.6	2.00	51	28	1 ⁷ /8
36	900	50.00	1270	46.00	1168.5	40.25	1022	4.12	104.7	2.12	54	32	2

Height of raised face is 0.06 inch (1.6 mm) each.

Class 600 steel pipe flange dimensions

Nominal Size		D		С		g		t		h (Bolt hole)		Bolt	
inch	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	Number	Diam.
26	650	40.00	1016	36.00	914.5	29.50	749	4.25	108.0	2.00	51	28	17/8
28	700	42.25	1073	38.00	965.0	31.50	800	4.38	111.3	2.12	54	28	2
30	750	44.50	1130	40.25	1022.5	33.75	857	4.50	114.3	2.12	54	28	2

Height of raised face is 0.25 inch (6.4 mm) each.

NOTE

If any products designated as strategic material in the Foreign Exchange and Foreign Trade Law, Cabinet Order Concerning Control of Export Trade, Cabinet Order Concerning Control of Foreign Exchange and other related laws and ordinances ("Foreign Exchange Laws") are exported to any foreign country or countries, an export license issued by the Japanese Government will be required under the Foreign Exchange Laws.

Further, there may be cases where an export license issued by the government of the United States or other country will be required under the applicable export-related laws and ordinances in such relevant countries.

The contract shall become effective subject to that a relevant export license is obtained from the Japanese Government.

Pressure-temperature ratings and other performance data published in this catalog have been developed from our design calculation, in-house testing, field reports provided by our customers and/or published official standards or specifications. They are good only to cover typical applications as a general guideline to users of KITZ products introduced in this catalog.

For any specific application, users are kindly requested to contact KITZ Corporation for technical advice, or to carry out their own study and evaluation for proving suitability of these products to such an application. Failure to follow this request could result in property damage and/or personal injury, for which we shall not be liable.

While this catalog has been compiled with the utmost care, we assume no responsibility for errors, impropriety or inadequacy. Any information provided in this catalog is subject to from-time-to-time change without notice for error rectification, product discontinuation, design modification, new product introduction or any other cause that KITZ Corporation considers necessary. This edition cancels all previous issues.

NOTICE

If any products designated as strategic material in the Foreign Exchange and Foreign Trade Law, Cabinet Order Concerning Control of Export Trade, Cabinet Oeder Concerning Control of Foreign Exchange and other related laws and ordinances ("Foreign Exchange Laws") are exported to any foreign country or countries, an export license issued by the Japanese Government will be required under the Foreign Exchange Laws.

Futher, there may be cases where an export license issued by the government of the United States or other country will be required under the applicable export-related laws and ordinances in such relevant countries.

The contract shall become effective subject to that a relevant export license is obtained from the Japanese Government.

A chrysanthemum-handle is a symbol of KITZ, the brand of valve reliability

1-10-1, Nakase, Mihama-ku, Chiba 261-8577, Japan International Sales Dept. Phone : 81-43-299-1730, 1732 and 1733 Fax : 81-43-299-0121

--- Distributed by ---

rax. 01-43-299-012

Printed in Japan 0712①ITP